LA COSMOLOGIE MODERNE : LES NOUVEAUX OUTILS D'OBSERVATION DE L'UNIVERS
 

 

 

 

 

 

 

LA COSMOLOGIE MODERNE : LES NOUVEAUX OUTILS D'OBSERVATION DE L'UNIVERS


La nuit semble être noire. Il n'en est rien. L'univers baigne dans un rayonnement aux multiples origines. Dès le 17e siècle, le physicien Olberg montre tout le parti pouvant être tiré de la brillance du ciel. Si l'univers était uniforme et infini, la brillance du ciel due à la superposition de l'émission de toutes les sources qui le composent, devrait être infinie. Le fait qu'elle ne le soit pas, montre que l'univers n'est ni uniforme, ni infini. Il faut attendre le début du XXe siècle pour comprendre les implications profondes du paradoxe de Olberg. Grâce aux observatoires spatiaux, les astrophysiciens modernes élargissent leur champ d'investigation à tout le domaine du rayonnement électromagnétique. Les satellites américains permettent d'achever la mesure complète du spectre du rayonnement présent dans l'univers. Ces observatoires permettent également d'identifier les origines de ce rayonnement. Le recensement de l'univers est en passe d'être achevé. C'est en soi un résultat spectaculaire, qui marque la fin d'une recherche qui a commencé il y a plus de deux mille ans. Les résultats obtenus montrent que comme l'a supposé Olberg, l'univers n'est ni uniforme, ni infini, mais qu'en plus lui et ses constituants ont évolué très fortement depuis leur origine. La prochaine génération de télescopes, au sol, et dans l'espace va s'attaquer à la compréhension de cette évolution. Mais l'univers n'est pas fait que de rayonnement. Il contient aussi des particules. Depuis les années 1930 on sait que plus de 90% de cette matière échappe à la détection. Des recherches sont activement poursuivies par les astrophysiciens et les physiciens des particules pour élucider ce problème. Par contre des progrès spectaculaires ont été très récemment obtenus sur la répartition de cette matière dans l'univers, en utilisant la propriété de déflexion de la lumière par une masse gravitationnelle prédite par la relativité générale d'Einstein. L'univers lointain nous apparaît déformé car la lumière émise par les galaxies lointaines ne se propage pas en ligne droite. Son parcours s'infléchit en passant à proximité de masses importantes. Les astrophysiciens ont mis au point des techniques permettant de calculer ces déformations, et donc de calculer la distribution de la matière noire responsable de ces déformations. C'est un domaine en plein développement.

Texte de la 184ème conférence de l’Université de tous les savoirs donnée le 2 juillet 2000.
La cosmologie moderne : les nouveaux outils d’observations de l’Univers par Laurent Vigroux
La nuit semble être noire. Il n’en est rien. Avec les instruments d’observations modernes, la nuit est brillante. Mais le paradoxe est qu’elle ne soit ni noire, ni infiniment claire. Brillante certes, mais pourquoi si peu ? Dès le XVIIe siècle, le physicien Danois Olberg avait montré tout le parti que l’on peut tirer de la brillance du ciel. Si l’Univers était uniforme et infini, la brillance du ciel due à la superposition de l’émission de toutes les sources qui le composent devrait être infinie. Heureusement pour la vie sur Terre, il n’en est rien. Il a fallu attendre le milieu du vingtième siècle pour comprendre les implications profondes de ce paradoxe. Le cadre de cette compréhension a été fourni par Einstein avec sa théorie de la gravitation. Les observations de Hubble dans les années 1920-1930 ont montré que l’Univers était en expansion. On sait maintenant que les constituants de l’Univers ne sont pas immuables, ils évoluent dans le temps. On sait qu’ils ne sont pas répartis de manière uniforme dans l’espace, et on sait que l’Univers observable est fini. C’est pourquoi la nuit n’est que grise. Notre compréhension de la cosmologie a fait des progrès spectaculaires ces vingt dernières années. Cela tient aux progrès des observations, grâce surtout aux observatoires spatiaux, mais aussi aux progrès spectaculaires de la théorie et des simulations numériques. Quels sont ces progrès, c’est ce que nous allons passer en revue dans la suite de cette conférence.

Le rayonnement
La principale source d’information sur l’Univers et ses constituants provient de la lumière. Par lumière, on entend l’ensemble du spectre des ondes électromagnétiques, qui s’étend des rayons gamma et X, à haute énergie, jusqu’aux ondes micro-ondes et radios à basse énergie, en passant par la lumière visible, à laquelle nous sommes plus habitués. Le véhicule d’information de la lumière est une particule appelée photon, et, dans les théories de physique moderne, on peut décrire la propagation de la lumière aussi bien en termes d’ondes, que de photons. En général, à basse énergie, le nombre de photons reçus par un télescope moderne est très élevé, de l’ordre de plusieurs centaines de milliers par seconde, et on préfère décrire les phénomènes en termes d’ondes. A haute énergie, les photons sont plus rares, de l’ordre de quelques photons par seconde en rayons X, et de quelques photons par jour dans les gammas de très grande énergie, et on préfère décrire les phénomènes en terme de photons. Mais la physique sous-jacente reste la même. L’avantage principal de la lumière est qu’elle se propage en ligne droite sans être trop absorbée. Elle permet donc d’observer des sources très lointaines et de les localiser. Depuis des temps immémoriaux, la lumière a été le principal, sinon le seul, moyen d’observation du ciel. Les deux principales sources de lumière sont un rayonnement fossile lié aux premières étapes de l’évolution de l’Univers, et la somme des rayonnements émis par les constituants de l’Univers, étoiles, galaxies et amas de galaxies.
Le rayonnement fossile
Contrairement aux rêves des technocrates, les plus grandes découvertes sont le fruit d’actions non préméditées. Il en est ainsi de la découverte du rayonnement fossile. La guerre de

1
39-45 a eu de nombreux effets négatifs. Elle a néanmoins entraîné un progrès notable des techniques. Hiroshima a montré que ce n’était pas toujours pour le meilleur. Mais les progrès des techniques des radars ont été à l’origine des progrès spectaculaires de la radioastronomie après guerre. Le relais fut pris ensuite par le développement des télécommunications. C’est ainsi que deux ingénieurs de la Bell Telephone, Penzias et Wilson, en essayant de régler une antenne très sensible, ont buté sur un bruit de fond isotrope et continu. L’étude de ce bruit de fond a permis de l’identifier à un rayonnement prédit dans le cadre des théories d’expansion de l’Univers. Contrairement à ce que l’on affirme souvent, ce rayonnement n’est pas lié au big-bang. Il est produit bien après l’explosion initiale. Il existe dans n’importe quelle théorie d’expansion qui prédit que l’Univers est passé dans des phases suffisamment chaudes et denses pour que les atomes soient entièrement ionisés. Dans ces conditions, l’Univers est rempli de protons, de noyaux, d’électrons et de photons. Les photons interagissent avec les électrons. Ils sont en équilibre avec eux, et ne peuvent pas se propager sur de grandes distances. A cause de l’expansion de l’Univers, la matière se refroidit, jusqu’au moment où les atomes se forment. Les électrons se combinent avec les noyaux pour former des atomes. L’Univers devient alors transparent pour les photons, qui n’ont plus rien pour interagir. Le spectre d’énergie des photons est alors celui d’un corps noir à la température de l’Univers à l’époque de la recombinaison. Par la suite, la température de ce corps noir se refroidit du fait de l’expansion de l’Univers. Il est à l’heure actuelle voisin de 2,7°K, c’est à dire -270,3°C. C’est pour cela que l’on ne l’observe que dans le domaine des micro-ondes et des ondes radio. Le pic de l’émission se trouve vers 1,4 mm. Depuis la découverte initiale, il aura fallu trente ans pour que l’on puisse mesurer ce spectre d’émission de corps noir cosmologique avec une grande précision. Cela fut effectué au moyen du satellite américain COBE lancé en 1989. On peut maintenant affirmer avec certitude que cette émission est bien d’origine cosmologique.
Ce rayonnement est isotrope et uniforme avec une très grande précision. On peut néanmoins déceler des petites déviations, qui, traduites en termes de température, correspondraient à des fluctuations de quelques micro kelvin. C’est-à-dire des fluctuations de quelques parties par million. Ces fluctuations dans le spectre des photons correspondent à des fluctuations de densité des électrons à l’époque de la recombinaison. L’Univers était alors presque homogène, mais pas tout à fait. Ces fluctuations de densité ont par la suite donné naissance aux galaxies et aux amas de galaxies. Mesurer les fluctuations de température du corps noir cosmologique revient à déterminer les fluctuations de densité pratiquement à l’origine du monde. COBE fut le premier observatoire qui permit de prouver l’existence de ces fluctuations. Malheureusement, ce résultat est peu contraignant pour les modèles cosmologiques, car les échelles angulaires auxquelles COBE avait accès sont sans commune mesure avec la taille des galaxies et des amas que l’on observe aujourd’hui. COBE a prouvé que l’Univers n’était pas complètement homogène ; il n’a pas permis de déterminer dans quel type d’univers nous vivons. Pour progresser, il faut réaliser des instruments qui ont une résolution angulaire voisine de quelques minutes d’arc, bien mieux que les 7 degrés de COBE. BOOMERANG, un télescope américain italien, lancé en 1999 par un ballon dans un vol circum-antarctique de quinze jours, a réussi pour la première fois à fournir une carte des fluctuations à des échelles angulaires de l’ordre de la vingtaine de minutes d’arc. L’analyse de ces fluctuations a montré qu’elles impliquaient un univers de type plat. Rappelons qu’il y a trois types de géométries possibles dans les modèles d’univers compatibles avec la relativité générale d’Einstein. Ces univers sont définis par leur courbure, positive, négative ou nulle. Les résultats de BOOMERANG semblent montrer que nous sommes dans ce dernier cas, c’est-à-dire le modèle le plus simple, le plus banal. Tant
2
pis. Pour être tout à fait certain de ces résultats, il faudra attendre le satellite européen PLANCK Surveyor, qui sera lancé en 2007 par l’Agence Spatiale Européenne. Ce satellite aura une meilleure résolution angulaire que BOOMERANG et les instruments similaires qui sont en cours de réalisation dans divers pays, dont la France, et surtout, il effectuera une cartographie complète du ciel, ce que ne feront pas les autres projets. Vous voulez savoir dans quel univers vous vivez ? Attendez 2007 et vous aurez la réponse.
L’Univers et ses constituants
L’étude du corps noir cosmologique permet de voir quelle était la structure de l’Univers à ses débuts. Cela n’indique en rien comment se sont formés les objets, galaxies, ou amas de galaxies, que nous observons dans notre environnement proche. Heureusement, nous pouvons utiliser une loi physique bien connue pour remonter le temps : la vitesse finie de la lumière. Observer une galaxie située à un milliard d’années lumière, c’est l’observer telle qu’elle était il y a un milliard d’années. La pêche aux galaxies jeunes consiste à aller rechercher les plus lointaines. Malheureusement, une autre loi de la physique vient contrarier ce plan : la luminosité apparente d’un objet diminue comme le carré de la distance de cet objet ; c’est-à-dire très rapidement. Projetons une galaxie dix fois plus loin, elle nous apparaîtra cent fois plus faible. Pour donner un ordre de grandeur, une galaxie comme la nôtre située à 5 milliards d’années lumière, soit à la moitié de son âge actuel, nous apparaît cent fois moins brillante que le ciel d’une nuit noire. Autant dire que la recherche des galaxies jeunes nécessite de très grands télescopes, qui sont les seuls à avoir un pouvoir collecteur suffisant pour détecter les galaxies les plus lointaines. C’est pourquoi, cette recherche ne s’est avérée fructueuse qu’après la mise en service des grands télescopes de la classe 8-10 m de diamètre. Les premiers furent les télescopes Keck situé au sommet du Mauna Kea dans l’île d’Hawaii. L’Europe n’est pas en reste avec les quatre télescopes de 8 m situés dans le désert d’Atacama, et qui constituent le Very Large Telescope. En fait la recherche a commencé avec le Hubble Space Telescope, satellite de la NASA avec une forte participation de l’ESA. Le fait d’être dans un satellite, au-dessus de l’atmosphère terrestre, permet d’avoir des images beaucoup plus piquées qu’au sol. C’est un atout indispensable pour détecter les objets les plus faibles. La stratégie qui a été suivie ces dix dernières années a consisté à détecter des galaxies lointaines avec le Hubble Space Telescope, puis à les caractériser avec les télescopes géants au sol. Cette méthode s’est révélée payante, puisque entre 1996 et 1998, plusieurs groupes ont réussi à démontrer que les galaxies lointaines étaient différentes des galaxies locales. Si on retrouve bien le pendant des galaxies proches, on trouve aussi pléthore de galaxies plus petites, et qui ont des couleurs plus bleues que les galaxies locales. Cette couleur est due à la présence d’étoiles jeunes. Ces petites galaxies sont donc dans des phases intenses de formation d’étoiles, environ trois fois le taux observé dans les galaxies proches.
Chercher des galaxies jeunes en utilisant la lumière visible, est-ce la bonne approche ? Pour répondre à cette question, il faut savoir quels sont les mécanismes d’émission de lumière par les galaxies. La source principale d’énergie est la gravitation. C’est elle qui permet à la galaxie d’exister en tant qu’objet individuel. C’est elle aussi, qui permet aux étoiles de se former et d’atteindre en leur centre des densités et des températures suffisantes pour que les réactions nucléaires se déclenchent. La source principale de rayonnement d’une galaxie est due aux étoiles qui la peuplent. Une galaxie normale contient quelques centaines de milliards d’étoiles. L’énergie nucléaire dégagée en leur sein se transforme en rayonnement. Le soleil nous éclaire à l’énergie

3
nucléaire. Paradoxe amusant sur les énergies propres. Une galaxie n’est pas composée seulement d’étoiles. Elle est aussi remplie de gaz et de poussières. Ces poussières interstellaires sont des grains allant de quelques centaines d’atomes, jusqu’à des grains microscopiques de quelques microns de longueur. Ils se décomposent en deux grandes familles, des grains carbonés, et des silicates. Ces grains absorbent une grande partie du rayonnement des étoiles. Du coup, ils sont chauffés et émettent eux-mêmes de la lumière. Certes, c’est un chauffage modeste, puisque la température moyenne des grains interstellaires est voisine de 20°K, soit -250°C. Cela est néanmoins suffisant pour que cette émission soit mesurable dans l’infrarouge. Ce processus de transformation de l’énergie, absorption du rayonnement des étoiles, chauffage des poussières et ré-émission dans l’infrarouge peut être si efficace que dans des cas extrêmes, des galaxies rayonnent presque 100 % de leur énergie dans l’infrarouge. Cela fut une des grandes découvertes du satellite IRAS lancé en 1983 et réalisé en partenariat américain, anglais et hollandais. Ce satellite a été à l’origine d’une lignée de satellites dédiés à l’étude du ciel en infrarouge : ISO, européen lancé en 1995, SIRTF américain qui sera lancé en 2002 et FIRST, européen, qui sera lancé en 2007. Chacun d’eux représente un gain en termes de sensibilité, couverture en longueur d’onde et résolution spatiale. En combinant les observations d’ISO, et celles de COBE, on a pu montrer que les galaxies émettent globalement 3 fois plus d’énergie dans l’infrarouge que dans le visible et l’ultraviolet. ISO a montré que, lorsqu’elles avaient la moitié de leur âge actuel, les galaxies étaient beaucoup plus souvent de forts émetteurs infrarouges. Si seulement 3 % des galaxies actuelles émettent plus d’énergie dans l’infrarouge que dans le visible, elles étaient 30 % dans ce cas il y a 5 milliard d’années. Quelle est l’origine de ce phénomène ? Selon toute vraisemblance, il s’agit d’épisodes de formation d’étoiles intenses qui se sont déroulées dans le passé. Par l’étude des galaxies ultra lumineuses en infrarouge, découvertes par IRAS, on sait que ces galaxies sont en interaction avec d’autres galaxies et qu'elles subissent des flambées de formation d’étoiles très intenses, à la suite de ces interactions. Les observations dans le visible ont montré qu’il y avait, il y a quelque 5 milliards d’années, une population de petites galaxies qui n’ont pas leur équivalent de nos jours ; les observations en infrarouge montrent que les grandes galaxies de l’époque subissaient des flambées de formation d’étoiles liées à des interactions entre galaxies. La tentation est forte de réconcilier ces deux observations dans un scénario où les petites galaxies sont progressivement avalées par les grosses, entraînant ces épisodes de forte émission infrarouge. La vie des galaxies n’est pas plus tranquille que celle des êtres vivants. Les gros mangent les petits. Ce processus de fusion hiérarchique est prédit par les modèles cosmologiques. La rapidité avec laquelle il se déroule dépend fortement des paramètres du modèle. On peut donc par l’étude des galaxies lointaines contraindre les modèles et la valeur de leurs paramètres. SIRTF, et surtout FIRST permettront d’affiner cette vision, et surtout de pouvoir retracer dans le temps cette évolution. ISO n’a pu que décrire ce qui s’est passé lors des cinq derniers milliards d’années, FIRST permettra de remonter presque jusqu’au début de l’histoire des galaxies.
ISO, SIRTF et FIRST permettent de détecter ces galaxies lointaines ; ils permettent d’en mesurer le flux en fonction de leur longueur d’onde ; leur faible résolution angulaire ne leur permet pas d’en réaliser de véritables images. Pour ces observatoires, les galaxies sont des points. Pour en réaliser des images, il faut utiliser un autre principe. Même dans l’espace, la résolution angulaire d’un télescope est limitée par un phénomène appelé diffraction. Il est impossible de résoudre deux sources qui ont séparées par des angles plus petit qu’un angle limite égal au diamètre du télescope divisé par la longueur d’onde de l’observation. Pour un télescope de 2 m en orbite, le pouvoir séparateur est limité dans le visible à 0.1 seconde d’arc, soit 1/36000 de

4
degré. Cela peut paraître peu, mais c’est déjà trop pour réaliser des véritables images d’objets qui ne font que quelques secondes d’arc de diamètre, comme les galaxies qui nous intéressent. Le diamètre des télescopes en orbite est limité par les capacités de lancement. Même si les USA et l’Europe envisagent de lancer vers 2010 un télescope de 8 m de diamètre en orbite, le New Generation Space Telescope, cela restera encore très loin de ce qu’il faut pour pouvoir faire des images de ces galaxies. Sur terre, à ce phénomène de diffraction se rajoute une déformation des images due à la turbulence atmosphérique ; les images ont des résolutions de l’ordre de la seconde d’arc, les bonnes nuits. La seule solution pour s’affranchir, soit de la diffraction, soit de la turbulence atmosphérique, c’est d’utiliser un autre principe d’imagerie : les interférences. Comme on l’apprend dans les classes de physique, si l’on combine la lumière captée par deux télescopes, on obtient un système de franges noires et brillantes, qui dépend de la phase respective des ondes lumineuses qui arrivent sur les deux télescopes. En analysant le système de frange, on peut calculer le déphasage des deux ondes, et donc en déduire leur direction d’origine. L’avantage de cette méthode est que l’interfrange entre les franges brillantes et sombres dépend du rapport entre la distance entre les deux télescopes et la longueur d’onde de l’observation. En combinant deux télescopes distants de 100 m, on peut obtenir le même pouvoir séparateur qu’avec un télescope monolithique de 100 m de diamètre, et ce, quelque soit le diamètre des télescopes de l’interféromètre. Ce principe est utilisé depuis de nombreuses années en radioastronomie. Il commence à être utilisé dans le visible. Le Very Large Telescope européen aura un mode interféromètrique combinant la lumière reçue par les quatre télescopes qui le composent. Mais l’instrument privilégié pour l’étude des galaxies lointaines sera ALMA. L’Atacama Large Millimeter Array sera un réseau de 64 antennes de 12 m de diamètre chacune, qui sera installé de manière conjointe par les américains et les européens dans le désert de l’Atacam à 5000 m d’altitude, au Chili. Il fonctionnera dans l’infrarouge lointain et le submillimétrique. Sa mise en service est prévue vers 2010. Il permettra d’obtenir des images avec une résolution angulaire meilleure qu'un centième de seconde d’arc. Enfin, nous pourrons réellement voir à quoi ressemble une galaxie jeune.

La matière
L’Univers n’est pas constitué que de rayonnement, il est aussi matériel. Les étoiles, les galaxies ont été découvertes il y a longtemps. Mais cela ne fait pas le compte. Dès 1935, l’astronome Zwycky, en utilisant le télescope du mont Palomar, avait montré qu’il devait y avoir une quantité de matière importante qui n’avait pas encore été découverte. Il était arrivé à cette conclusion en mesurant les vitesses des galaxies dans les amas de galaxies. Depuis Newton, on sait qu’il existe une relation entre l’accélération des corps et la masse gravitationnelle. Si on augmentait la masse du soleil, la terre tournerait plus vite autour du soleil. Inversement, si on connaît la distance de la terre au soleil et la vitesse de rotation de la terre, on peut en déduire la masse du soleil. Il en est de même avec les galaxies dans un amas. La mesure de la vitesse des galaxies dans un amas permet de calculer la masse de l’amas. Comme on connaît la masse des galaxies, de par leur luminosité, il est facile de comparer les deux estimations. Problème : la masse estimée par la dynamique est dix fois plus grande que celle identifiée dans les galaxies. On a trouvé par la suite que les galaxies tournaient également trop vite pour leur masse identifiée dans les étoiles. Il existe donc une composante de matière cachée, qui représente presque 90 % de la masse de l’Univers. Bien que les étoiles et les galaxies soient des objets brillants et

5
remarquables, elles ne représentent qu’une infime partie de l’Univers. Qu’est ce que cette masse cachée ?
Depuis une cinquantaine d’années, les astrophysiciens l’ont cherché sous toutes les formes possibles. D’abord de la matière entre les étoiles ; on a trouvé un milieu interstellaire composé de gaz et de poussières, mais il ne représente qu’un dixième de la masse des galaxies. On a postulé un milieu gazeux dans les amas de galaxies, entre les galaxies. On l’a trouvé. Il s’agit d’un gaz très peu dense, un noyau par litre, et très chaud, quelques dizaines de millions de degrés. Ce milieu a été découvert dans les années 70 grâce à son émission dans les rayons X. Mais là encore, cela ne suffit pas, bien que ce gaz représente une masse supérieure d’un facteur 2 à la masse présente dans les galaxies. On l’a cherché sous la forme d’étoiles isolées de très faible masse, des gros Jupiter en somme. Ces étoiles sont trop petites pour que des réactions nucléaires s’y déclenchent. Elles restent donc sombres, d’où leur nom de naines brunes. On en a trouvé, mais pas assez. Les recherches se poursuivent. Les physiciens des particules se sont mis de la partie, en cherchant des particules inconnues. Bien que les théories dites supersymétriques qui tentent de concilier la gravitation et la mécanique quantique, prédisent l’existence de nouvelles particules, il n’est pas évident de chercher des particules dont on ignore tout. Pour l’instant, les recherches sont vaines. La nature de cette matière noire reste la grande énigme de la cosmologie.
Mais la matière noire devient de moins en moins noire. On arrive par des moyens détournés à en réaliser des images. Le gaz des amas est un outil privilégié d’analyse. Ce gaz est maintenu dans l’amas par l’attraction gravitationnelle exercée par la matière noire. Si l’on connaît la répartition de ce gaz, on peut en déduire la répartition de la matière en résolvant les équations de la dynamique. Cette méthode avait été mise au point depuis quelques années, mais on manquait d’une information essentielle : le profil de température du gaz en fonction de la distance à l’amas. Le gaz est en effet en équilibre entre sa pression interne, liée à sa température, et l’attraction gravitationnelle. Sans profil de température, on ne peut pas résoudre les équations de l’équilibre. C’est maintenant chose faite grâce à l’observatoire en rayon X européen XMM- Newton. Ce satellite, lancé à la fin de 1999, vient de permettre pour la première fois de déterminer de manière précise le profil de température du gaz dans un amas. Cela a permis d’en déduire le profil de densité de la matière noire. De là, on peut calculer quelques grandeurs typiques de cette matière noire comme sa température, sa pression interne, ou sa compressibilité. Heureusement pour les théoriciens, ces résultats ne sont en accord avec aucune des théories qui avaient été développées jusque-là. Il leur reste du travail pour encore quelques années. Plus directement, la matière noire fournit elle même les outils pour l’observer. Dans la gravitation générale d’Einstein, la lumière ne se propage pas en vrai ligne droite. Elle se propage le long de lignes qui sont déformées au passage d’une masse gravitationnelle. Cette prédiction a été vérifiée de manière éclatante au début du siècle en observant comment la position d’une étoile sur le ciel semblait changer, au fur et à mesure que les rayons lumineux entre elle et nous passaient près du soleil. De la même manière, si nous observons une galaxie située derrière un amas de galaxies, l’image de cette galaxie nous apparaîtra déformée à cause de son passage dans le champ gravitationnel de l’amas. La matière noire déforme les images de l’Univers lointain. Cet effet de lentille gravitationnelle est connu depuis longtemps. Mais ce n’est que depuis quelques années que nous disposons d’instrument d’imagerie suffisamment sensible et fiable pour pouvoir l’utiliser de manière systématique pour étudier la distribution de la matière noire dans les amas. L’image des galaxies déformées par un effet de lentille gravitationnelle se présente sous la forme d’un arc. Le premier arc gravitationnel a été trouvé grâce à des observations menées sur le télescope Canada-France-Hawaii en 1985. Depuis, en particulier grâce au télescope spatial

6
Hubble, on en a trouvé dans presque tous les amas observés. De la forme de l’arc, on peut en déduire la perturbation des rayons lumineux, et donc la distribution de la matière noire. La problématique de l’observation est renversée. D’habitude, on a une source, un télescope et on étudie l’image. Dans ce cas-là, on dispose d’une source, d’une image, et on calcule le télescope qui a produit cette image. Le télescope à matière noire est le plus gros instrument dont nous disposions ; chaque amas de galaxie représente un télescope de plusieurs centaines de millions d’années lumières de diamètre et de plusieurs dizaines de milliers de milliards de masses solaires de masse ! Heureusement que la nature nous l’offre. Le télescope à matière noire a déjà permis de faire des cartes de la matière noire dans les amas. Très récemment, encore, grâce à des observations effectuées avec le télescope Canada-France-Hawaii, il a été possible d’étendre cette méthode à des échelles dépassant la taille des amas classiques. Ce sera le domaine privilégié de recherches de MEGACAM, la prochaine grande caméra d’imagerie qui sera installée sur le télescope CFH à la fin 2001.

Insérer ici les trois figures
Un univers plat, des galaxies qui se forment par fusion hiérarchique, de la matière noire qui sert de télescope, les progrès accomplis ces dernières années ont profondément bouleversé notre connaissance de l’Univers et de ses constituants. En combinant les observations à toutes les longueurs d’onde, grâce aux observatoires spatiaux, nous avons pratiquement identifié toutes les sources qui sont à l’origine de la brillance du ciel. Le recensement de l’Univers est maintenant pratiquement achevé. C’est en soi un résultat spectaculaire. L’aboutissement de recherches commencées il y a plus de deux milles ans. Mais l’aventure continue. Il nous faut maintenant comprendre la physique de ces objets, leurs interactions et leur évolution. Il faut préciser le type d’univers dans lequel nous vivons. La génération actuelle des grands télescopes au sol, et la prochaine génération d’observatoires spatiaux permettra d’atteindre tout ou partie de ces objectifs. La grande inconnue reste la nature de la matière noire. Toutes les recherches ont été vaines. Dans quelles directions chercher maintenant ? Des pistes existent. Seront-elles fructueuses ? Bien malin qui peut le prédire. On ne peut qu’espérer que la solution sera trouvée un jour. Ce sera probablement par une découverte fortuite comme l’a été la découverte du rayonnement fossile.

 

 VIDEO       CANAL  U         LIEN
 

 
 
 
  CORDES, LES INSTRUMENTS DE L'ULTIME
 

 

 

 

 

 

 

CORDES, LES INSTRUMENTS DE L'ULTIME


La théorie des cordes occupe aujourd'hui une fraction importante de la communauté internationale de physique théorique. Les institutions les plus prestigieuses y sont représentées et de nombreux jeunes et brillants étudiants rejoignent chaque année ses rangs. Après avoir été introduites dans les années 60 pour décrire les « interactions fortes » (forces de cohésion nucléaire), les cordes ont été élevées au rang de candidats à la description unifiée de toutes les interactions possibles entre particules. Mais que sont vraiment les cordes ? Comment apparaissent-elles en physique des particules élémentaires ? Quelles notions véhiculent-t-elles dans cette physique ? Et quelles sont leurs ambitions ? Au cours de mon exposé, j'essaierai de donner quelques éléments de réponse à toutes ces questions, et à toutes celles que l'on peut se poser au vu de la diversité du sujet. J'expliquerai ce qui dans les cordes conduit à la notion d'unification des forces, comment s'introduit la gravitation ou encore pourquoi on parle de « nouvelles dimensions » d'espace-temps. Enfin j'évoquerai l'importance grandissante du sujet dans la compréhension de l'évolution de l'univers.

Texte de la 530e conférence de l'Université de tous les savoirs donnée le 17 juin 2004
Cordes, les instruments de l'ultime
Marios Petropoulos
Les cordes sont apparues en physique théorique des hautes énergies il y a plus de trente ans. Elles étaient à l'époque l'exclusivité d'une poignée de chercheurs. Au cours de toutes ces années le sujet s'est développé, ramifié vers les mathématiques ou la cosmologie et occupe aujourd'hui une fraction importante de la communauté internationale de physique théorique. Les institutions les plus prestigieuses y sont représentées et de nombreux jeunes et brillants étudiants rejoignent chaque année ses rangs.
Après avoir été introduites pour décrire les « interactions fortes » (forces de cohésion nucléaire), les cordes ont été élevées au rang de candidats à la description unifiée de toutes les interactions possibles entre particules.
Mais que sont vraiment les cordes ? Comment apparaissent-elles en physique des particules élémentaires ? Quelles notions véhiculent-t-elles dans cette physique ? Et quelles sont leurs ambitions ?

Cordes et l'école de Pythagore
Une façon de comprendre le rôle des cordes dans son principe est de se rappeler les observations de l'école de Pythagore (580 - 510 av. J.C.) sur la consonance des intervalles musicaux. Leur portée reste considérable, même au 21ème siècle.

Une fois sollicitées, des cordes approximativement identiques, tendues avec la même force, mais dont les longueurs sont dans des rapports entiers, émettent des sons qui s'accordent agréablement. Ce phénomène, qualifié de « juste proportion » par les Pythagoriciens, est une manifestation du phénomène de résonance, que ces derniers avaient mis en évidence de manière empirique, grâce à l'ouie humaine. L'apparition de nombres entiers dans le domaine de la musique, vecteur de sensations fortes, avait suscité une vive émotion et avait conduit naturellement à étayer la thèse de l'harmonie universelle, principe philosophique récurrent depuis Pythagore.
On peut êtr18e plus précis et examiner ces notions à la lueur de ce que l'on connaît aujourd'hui sur les spectres de cordes tendues. L'excitation d'une corde produit des vibrations. Ces vibrations apparaissent avec des fréquences propres. La fréquence fondamentale, qui est celle dont l'amplitude est la plus grande, va comme l'inverse de la longueur de la corde :
Dans cette expression, est la longueur de la corde, sa tension et sa densité linéique. Cette loi s'applique à toutes les cordes : haubans de mâtures de bateaux, de ponts suspendus ou cordes d'instruments de musique. Dans ce dernier cas, la fréquence fondamentale (la plus intense) définit la note. Le timbre résulte des harmoniques, vibrations de moindre amplitude qui accompagnent le fondamental et dont l'intensité dépend de la nature de la corde et de son environnement. Leurs fréquences, en revanche, ne sont pas affectées par ces facteurs ; ce sont des multiples entiers de la fréquence fondamentale :
Pour fixer les idées et les ordres de grandeur, le la du diapason officiel est une vibration de 440 Hertz (cycles par seconde). Elle est obtenue par exemple au moyen d'une corde d'acier, longue de 30 cm et tendue à 172 Kgf (kilogramme-force).
Ce qui précède permet de comprendre l'origine de la consonance des sons émis par des cordes dont les longueurs sont dans des rapports entiers. On représente dans le tableau suivant les spectres des fréquences propres de cordes de longueur et /2 jusqu'à la 3ème harmonique (le nombre d'harmoniques est infini et elles sont toutes obtenues comme multiples de la fréquence fondamentale).
Fréquences propres de cordes de longueur et /2 jusqu'à la 3ème harmonique.
(les fréquences ν0 et 3ν0 n'apparaissent pas dans le spectre de la corde /2)
Comme la fréquence fondamentale est inversement proportionnelle à la longueur de la corde, la corde de longueur /2 a une fréquence fondamentale double de celle de la corde de longueur . De façon similaire, en doublant chacune des harmoniques du spectre de la corde de longueur on obtient le spectre des harmoniques de la corde de longueur /2.
On observe donc que le spectre complet (fréquences fondamentale et harmoniques) de la corde de longueur /2 est entièrement inclus dans celui de la corde de longueur . L'ensemble des fréquences propres de la corde de longueur /2 couvre la « moitié »1 des fréquences apparaissant dans la corde de longueur et cela explique pourquoi les sons émis par ces cordes sont si consonants. Ils le sont à ce point que le nom de la note qui leur correspond est le même. On dit de ces notes qu'elles sont séparées par une octave, qui est l'intervalle musical le plus consonant. L'octave supérieure est obtenue en divisant à nouveau la longueur par deux, ce qui revient à doubler encore une fois la fréquence fondamentale. Et ainsi de suite.
Des conclusions similaires sont obtenues en comparant les spectres de cordes dont les longueurs sont dans un rapport 1/3. Dans ce cas, le spectre de la corde de longueur /3 couvre le « tiers » seulement de celui de la corde de longueur . La consonance, quoique bien présente, est ici moins marquée et les notes correspondantes ont des noms différents. L'intervalle musical est la quinte.
On peut poursuivre ce raisonnement. Commençant par un sol réalisé au moyen d'une corde de longueur , on obtient le sol de l'octave supérieure en divisant la longueur par 2, le sol suivant en divisant la longueur par 4 etc. Si l'on divise la longueur par 3 on obtiendra le ré de l'octave supérieure, séparé du sol correspondant par une quinte et du sol suivant par une quarte. La division par 5 conduira au si d'une octave encore supérieure faisant apparaître cette fois la tierce mineure et la tierce majeure. Tout ceci est schématisé dans le tableau suivant.
Ce procédé peut être répété à l'infini. En divisant par 6, 7 ... la longueur de la corde initiale, on obtient d'autres notes et d'autres intervalles consonants. Par itérations successives on engendre ainsi la gamme pythagoricienne complète avec tous ses intervalles musicaux.
Gamme pythagoricienne et ses intervalles à partir d'un seul paramètre : la longueur .

Un univers conforme à une raison mathématique
La leçon à tirer de l'opération décrite ci-dessus est la suivante : moyennant un nombre limité de paramètres comme la longueur de la corde ou sa tension, on reconstruit de proche en proche un spectre complet : les lois de la nature y sont rigides et laissent peu de liberté.
Le « trait de génie » des Pythagoriciens était d'imaginer que leurs observations pussent transcender le cadre des cordes, que l'univers tout entier pouvait - devait - être régi par des lois simples et itératives où les nombres entiers joueraient un rôle privilégié. L'harmonie universelle ne pouvait résulter de la seule interprétation des sons et de leur consonance. Ces derniers étaient la création de l'homme, tout comme les instruments de musique qui les produisaient. L'harmonie universelle devait se trouver dans la nature.
La recherche de rapports numériques simples dans les phénomènes naturels s'est poursuivie jusqu'à la renaissance. Le mouvement des astres et des planètes et les observations précises de Tycho Brahé (1546 - 1601) ont pendant longtemps défini le cadre idéal pour ces investigations. Johannes Kepler (1571 - 1630) a lui-même adhéré à ce mode de pensée. Paradoxalement, les trois lois qu'il a énoncées ont permis a Isaac Newton (1642 - 1727) de formuler la théorie moderne de la gravitation, renvoyant dans les chimères toute la philosophie pythagoricienne sur l'harmonie universelle et ouvrant la voie vers la physique moderne.
Il a fallu attendre le 20ème siècle pour voir resurgir la notion d'universalité mise en évidence par l'école de Pythagore et voir reparaître les cordes dans la physique moderne des hautes énergies comme constituants élémentaires de la nature.
La physique des particules élémentaires
La physique des particules élémentaires est l'étude d'objets microscopiques - ou encore corpusculaires. Certains d'entre eux ont une structure interne : ils sont composites ; d'autres sont réputés pour ne pas en avoir et sont considérés comme élémentaires.
Les caractéristiques des corpuscules sont les suivantes : la masse, le spin et les charges (électrique, magnétique ...). Les deux premiers sont des caractéristiques de nature cinématique. La masse traduit l'inertie de l'objet c'est-à-dire la « résistance » qu'il oppose aux variations de son état de mouvement. Le spin est une notion plus difficile à appréhender. Pour des objets macroscopiques comme les planètes, le spin pourrait être comparé au mouvement de rotation propre. Transposée dans le domaine microscopique, cette comparaison est cependant limitée et on manque d'intuition pour comprendre pourquoi le spin est un multiple demi-entier d'une unité indivisible.
Le spin d'une particule : une forme de rotation propre autour d'un axe virtuel.
Enfin, il y a les charges. On connaît la charge électrique, la charge chromo-électrique ou chromo-magnétique, l'hypercharge ... Toutes ces charges caractérisent la manière dont les particules interagissent entre elles : comment elles se désintègrent si elles ne sont pas stables, comment de nouvelles particules sont créées lors de collisions, etc.

Elémentarité et taille des constituants
L'élémentarité est un concept relatif qui dépend des échelles de longueur auxquelles la matière est sondée. Celles-là sont fonction des énergies disponibles dans les faisceaux des collisionneurs. Avec le temps, notre perception de l'élémentaire et du complexe s'affine.
Pendant très longtemps l'atome a été considéré comme élémentaire. Les expériences de diffusion de Rutherford (1911) ont ébranlé ce concept : elles ont mis en évidence l'existence d'un noyau, occupant un volume très petit au centre de l'atome, et d'électrons en orbite autour du noyau. La taille du noyau est de l'ordre de 10 fm (fermi) ; celle de l'atome d'hydrogène par exemple est de l'ordre de 1/2 Å (angström), soit 5.000 fois supérieure environ. Dans cette révolution qui a conduit à l'avènement de la mécanique ondulatoire, au cours des années 1910, le mot « orbite » a dû être abandonné et remplacé par « orbitale ». Cette mécanique, encore appelée mécanique quantique, régit les lois de la physique microscopique et restitue la mécanique de Newton aux échelles macroscopiques. L'atome y apparaît comme un noyau dense au centre d'un nuage électronique dilué.
Unités de longueur et d'énergie microscopiques.
Le noyau lui-même n'est pas élémentaire. Il est composé de protons et de neutrons que l'on appelle nucléons et dont la taille est de l'ordre du fermi. En revanche, depuis sa découverte par Thomson, l'électron apparaît toujours dépourvu de structure interne et fait partie des leptons, particules élémentaires « légères ». Sa masse est de 0,511 MeV soit environ 2.000 fois inférieure à celle du proton qui est de 939 MeV.

Comme cela a été mentionné ci-dessus, la structure composite d'un corpuscule apparaît lorsque la résolution de l'instrument d'observation devient suffisante. Celle-ci va de 1/100 cm pour l'œil à 10-18 cm pour la prochaine génération de collisionneurs.
Quelques instruments d'observation : énergies et résolutions.
Les interactions et leurs intensités
Les interactions entre particules sont la manifestation des forces que l'une peut exercer sur l'autre au niveau microscopique. On en distingue quatre de propriétés très différentes. Les ordres de grandeur de leurs intensités sont reportés dans le tableau ci-dessous.
Interaction gravitationnelle
La force gravitationnelle est universelle et s'exerce entre tous les corps. Elle maintient la lune en orbite autour de la terre, engendre les marées, assure la cohésion des planètes dans le système solaire etc. Contrairement à notre intuition, cette force est très petite.
Interaction faible
Par ordre croissant d'intensité, on rencontre ensuite l'interaction faible. Le quotidien ne nous apprend rien à son sujet. Elle est responsable de la désintégration « b » de certaines particules instables en physique nucléaire. Elle n'est pas universelle : seuls certains corpuscules, porteurs d'une « hypercharge » sont vecteurs de cette force.
Interaction électromagnétique
L'interaction électromagnétique est celle qu'on enseigne au lycée : les forces électrostatiques, l'attraction ou la répulsion magnétique, les ondes radio, la lumière, etc. Seules les particules chargées électriquement ou les courants électriques participent à cette interaction.
Interaction forte
Enfin, l'interaction forte permet d'expliquer la cohésion nucléaire : elle est 100 fois plus intense que la force électrostatique, qu'elle compense entre les protons au sein des noyaux. Elle agit indifféremment entre neutrons et protons, et plus généralement entre hadrons. Les leptons, comme l'électron, sont insensibles à cette force.
Intensités des quatre forces entre deux protons distants de 5 fermi.

Lois du monde microscopique : particules et interactions
La mécanique de Newton, ou encore de Lagrange et d'Hamilton, ne peut décrire les phénomènes physiques du monde microscopique. Il ne suffit pas d'un changement d'échelle pour passer du mouvement des planètes autour du soleil à celui des électrons autour du noyau. Cette conclusion du début du 20ème siècle était le fruit d'une variété d'observations, dont l'essence se résumait à l'apparition d'une nouvelle constante universelle : la constante de Planck :
petite mais pas nulle. Cette propriété donne aux lois du monde microscopique leur caractère si particulier et si difficile à concilier avec l'intuition quotidienne. Ces lois sont celles de la mécanique quantique ou mécanique ondulatoire.
La constante de Planck matérialise la notion de dualité onde corpuscule. L'électron est certes un corpuscule. Cependant, il peut dans certaines circonstances se comporter comme une onde, donner lieu par exemple à des phénomènes de diffraction. Cette onde se caractérise par sa pulsation et sa longueur . L'une et l'autre sont reliées, par le biais de la constante de Planck, à des quantités naturelles pour un corpuscule : l'énergie et la quantité de mouvement (autrement dit l'impulsion) c'est-à-dire le produit de la masse par la vitesse.
Dualité onde corpuscule : relations de Planck et de de Broglie.
Pourquoi les objets macroscopiques qui nous entourent ne se comportent-ils pas comme des ondes ? Autrement dit, pourquoi obéissent-ils aux lois de la mécanique newtonienne plutôt qu'à celles de la mécanique quantique ? La réponse est simple. Au dénominateur de l'expression qui fournit la longueur d'onde de de Broglie apparaît la masse de la particule. Pour un objet macroscopique la masse est grande ; la longueur d'onde associée est infiniment petite comparativement aux dimensions de l'objet lui-même, qui « masque » donc son onde. On est alors dans le régime classique. A l'opposé, dès que les échelles de longueur de l'objet ou de son environnement sont petites vis-à-vis de la longueur d'onde de de Broglie, celle-ci est « libérée » et on parle de régime quantique. Cela peut se produire pour un électron, dont la masse est très faible et par conséquent la longueur d'onde très grande. Il donne alors lieu à des franges d'interférences si les fentes d'Young sont de taille comparable à la longueur d'onde.

La notion de dualité onde corpuscule n'est pas limitée aux seules particules, c'est-à-dire à la matière. Elle s'applique aussi aux interactions, aux forces dont il a été question ci-dessus. L'attraction ou la répulsion de charges électriques est le fait de l'existence d'un champ électrostatique ou électromagnétique. Ce champ se propage et apparaît en définitive comme le médiateur des interactions électromagnétiques. La propagation du champ électromagnétique dans le monde de l'infiniment petit est différente de celle des ondes (hertziennes, micro-ondes, lumineuses ...) dans les milieux macroscopiques. Le champ se manifeste comme une collection de quanta. Les interactions entre particules chargées ont lieu par échange de véritables corpuscules, les photons , quanta du champ électromagnétique. Il en est de même pour les interactions faible, forte et gravitationnelle : les bosons de jauge massifs, les gluons et le graviton sont les quanta qui y sont associés.
Interaction entre deux électrons par échange d'un photon.
Comme pour particules de matière, on peut définir un régime classique et un régime quantique pour les interactions. Selon les circonstances celles-ci se manifestent par un champ - une onde - ou par une collection de quanta. Ces circonstances varient d'une interaction à l'autre.
Interactions faible et forte
L'interaction faible et l'interaction forte sont de courte portée (pour des raisons différentes). Elles ne se manifestent donc qu'à des échelles de longueur beaucoup plus petites que les longueurs d'ondes des particules entre lesquelles elles agissent. On se trouve donc toujours dans un régime quantique. La notion d'onde ou de champ classique n'a jamais de sens ; seuls les quanta qui sont les médiateurs de ces interactions ont une existence : les bosons de jauge massifs pour l'interaction faible et les gluons pour l'interaction forte.
Interaction électromagnétique
Les interactions électromagnétiques sont de longue portée. Elles sont présentes à la fois dans le monde macroscopique où leur comportement est classique et dans le monde atomique ou subatomique où la notion de champ ou d'onde électromagnétique doit être abandonnée et remplacée par le concept d'interaction par échange de photon.

L'électrodynamique est l'étude des électrons en interaction électromagnétique. On définit un paramètre naturel, la longueur d'onde de Compton :
Il y apparaît la masse de l'électron et la vitesse de la lumière. C'est donc la longueur d'onde de de Broglie pour un électron se déplaçant à la vitesse de la lumière. Ce paramètre fournit le critère du régime de l'électrodynamique. L'électrodynamique est quantique et décrit les électrons et les photons à des échelles de longueur inférieures à la longueur d'onde de Compton. Autrement, elle est classique.
Interaction gravitationnelle
Comme l'électromagnétisme, la gravitation est de longue portée. Elle est donc classique ou quantique selon les échelles de longueur. La gravitation de Newton est née d'observations réalisées dans le système solaire c'est-à-dire pour des distances « moyennes » inférieures à 150.000.000 Km. Elle a été vérifiée en laboratoire à des échelles de l'ordre du millimètre.
Loi d'attraction universelle de Newton.
La loi de Newton est en réalité une approximation. La véritable théorie de la gravitation est celle de la relativité générale d'Einstein dans laquelle la gravitation résulte de la courbure de l'espace-temps. Cette courbure est engendrée par la présence d'un corps massif ou d'énergie.
Représentation naïve de la courbure de l'espace-temps engendrée par un corps.
La relativité générale permet d'affiner l'interprétation de certaines mesures au sein du système solaire (corrections post-newtoniennes), prévoit l'existence de trous noirs et d'ondes gravitationnelles (encore inobservés) et décrit l'évolution de l'univers dans son ensemble à des échelles cosmologiques (108 années-lumière2).
A l'instar de l'électrodynamique, la gravitation doit présenter un régime quantique lorsque les échelles de longueur sont suffisamment petites ou les énergies suffisamment élevées. A la notion d'onde gravitationnelle classique succède alors le graviton, quantum élémentaire médiateur de l'interaction gravitationnelle entre particules et qui est à la gravitation ce que le photon est à l'électromagnétisme.
Quel est le critère quantitatif qui définit la frontière entre les régimes classique et quantique de la gravitation ?
Il existe pour la gravitation une échelle de longueur naturelle, définie au moyen des trois paramètres qui sont les constantes universelles de Newton et de Planck, et la vitesse de la lumière :
Il s'agit de la longueur de Planck, qui joue pour la gravitation le même rôle que la longueur d'onde Compton pour l'électrodynamique. Les effets quantiques de la gravitation doivent être pris en compte à toute échelle voisine ou inférieure à la longueur de Planck.
La longueur de Planck est infiniment plus petite que la longueur d'onde de Compton. Cela résulte de la faible intensité de la force gravitationnelle. Pour observer les effets quantiques de la gravitation il faudrait sonder la matière à des distances inférieures à 10-33 cm. De telles échelles n'ont jamais été atteintes3. C'est pourquoi le graviton, essence même des effets quantiques de la gravitation, reste une particule hypothétique.
Doit-on conclure que la gravitation quantique est hors de portée parce que l'énergie de Planck4 ne sera jamais atteinte dans les accélérateurs de particules ?
Modèle standard cosmologique : le Big-bang
Non ! Car bien que les conditions du régime quantique de la gravitation ne puissent être créées artificiellement en laboratoire, elles ont existé dans la nature au moment du Big-bang.
La notion de Big-bang est issue du modèle standard cosmologique. Ce dernier, fondé sur la relativité générale et le modèle standard des particules5, décrit l'évolution de l'univers dans son ensemble. Il permet d'expliquer son expansion, découverte par Hubble en 1930, et prédit l'existence d'un « instant initial » de densité d'énergie et de température infinies. Cet instant singulier, le Big-bang, remonte à 13,7 milliards d'années. L'univers était alors confiné dans un volume de dimensions infinitésimales. Son évolution ultérieure a été une succession de recombinaisons de particules formant des structures de plus en plus grandes, et libérant en particulier un rayonnement électromagnétique, le fond diffus cosmologique, 380.000 ans après l'instant initial. Ce reliquat de lumière, prédit par Gamow en 1946, a été observé et mesuré en 1965 par Penzias et Wilson.
Les conditions d'énergie extrêmes au voisinage de la singularité initiale nécessitent le traitement quantique de la gravitation. Depuis quelques années, les observations sur terre et dans l'espace ne cessent de repousser les limites des connaissances sur l'univers à grande échelle : images passées de l'univers grâce aux grands télescopes, matière et énergie noires, constante cosmologique, supernovae, anisotropie du fond diffus, etc. Tôt ou tard il faudra prendre en compte les corrections quantiques à la gravitation pour confronter les modèles théoriques aux observations cosmologiques.
Mais qu'est-ce au juste la relativité générale dans le régime quantique ?

La chasse aux infinis
Les quantités mesurables expérimentalement en physique des particules sont les sections efficaces de diffusion. Des faisceaux de particules sont accélérés et amenés à produire des collisions à énergie élevée. On est au cœur de la physique quantique : lorsque les particules entrent en collision, de nouvelles particules sont créées. Elles sont détectées et, sur un grand nombre d'évènements, ce protocole expérimental fournit les probabilités d'observation d'évènements de type donné, encodées par les sections efficaces de diffusion.
Représentation d'une collision : en bleu les particules entrantes, en rouge, vert et jaune les particules sortantes.
Les sections efficaces sont par ailleurs accessibles dans le cadre d'une théorie microscopique. L'électrodynamique quantique permet par exemple de calculer ces quantités pour tout processus d'interaction entre photons, électrons et positrons (antiparticule de l'électron). De manière plus générale, les particules et leurs interactions électromagnétiques, faibles, fortes et gravitationnelles sont décrites au moyen d'un formalisme universel, celui de la théorie des champs quantiques. Ces derniers sont des objets abstraits qui véhiculent la dualité onde particule. A chaque type de particule et à chaque type d'interaction est associé un tel champ. La théorie qui en résulte constitue la version la plus élaborée de la mécanique quantique relativiste. On peut en principe y calculer les sections efficaces de diffusion.
Les théories quantiques des champs sont polluées de quantités divergentes. L'énergie totale du champ électrostatique d'un électron est infinie et de nombreux exemples similaires pourraient être cités. Selon leur nature, ces quantités infinies peuvent ou ne peuvent pas être absorbées dans une redéfinition adéquate des paramètres de la théorie. En conséquence, selon le cas, les sections efficaces de diffusion sont calculables ou ne le sont pas.

Lorsque l'interaction gravitationnelle est présente et décrite au moyen de la relativité générale, les quantités divergentes apparaissant dans le calcul des processus de diffusion ne peuvent pas être traitées sans altérer radicalement la théorie. Dans le régime quantique, la relativité générale perd donc son pouvoir prédictif. Et la description du commencement de l'univers lui échappe.
Retour aux cordes : cordes et interaction forte
C'est ici que les cordes réapparaissent : comme candidats à une description du régime microscopique (quantique) de la gravitation sans quantités infinies.
Historiquement les cordes sont entrées pour la première fois dans la physique des particules à la fin des années 60, dans le contexte des interactions fortes. Ce n'est que vers la fin des années 70 qu'elles ont été apparentées à la gravitation.
Rappeler le rôle que les cordes ont joué dans les interactions fortes est d'un intérêt à la fois historique et scientifique. On y retrouve une propriété remarquable déjà soulignée précédemment : le pouvoir prédictif dû à la rigidité de la théorie et à l'absence d'autres paramètres que la tension de la corde.
Les interactions fortes assurent la cohésion des noyaux. Elles agissent entre nucléons (protons et neutrons) et plus généralement entre hadrons : les mésons de spin entier et les baryons de spin demi-entier6.
Les hadrons.
Ces particules, de plus en plus nombreuses et de mieux en mieux étudiées dans les années 60, soulevaient d'importantes questions sur la nature des interactions fortes. Pourquoi leurs sections efficaces de diffusion se comportaient-elles de façon si lisse à haute énergie ? Pourquoi, dans un diagramme spin masse, se rangeaient-elles par famille, sur des droites de même pente (appelées trajectoires de Regge) ? Enfin, étaient-elles élémentaires ?
Les trajectoires de Regge sur un diagramme spin masse.
Une évidence était la suivante : l'énergie des collisionneurs augmentant, de plus en plus de nouveaux hadrons apparaissaient et entraient dans le schéma décrit ci-dessus. Il semblait possible qu'une infinité de telles particules existât dans nature et que ces particules fussent toutes ordonnées sur des trajectoires de Regge.
La structure du spectre des hadrons rappelait les gammes de Pythagore. La masse est reliée à une énergie par la relation d'Einstein et l'énergie à une pulsation par la relation de Planck :
Par ce biais, les hadrons pouvaient être identifiés aux excitations d'une corde : la fréquence, multiple entier d'une fréquence fondamentale, détermine la masse ; quant au nombre entier, il est relié au spin.
Pour reproduire correctement des masses de l'ordre du GeV- Giga-électron-volt- (par exemple 0,939 GeV pour les nucléons), le paramètre doit être de l'ordre du GeV-2. Cet ordre de grandeur est obtenu grâce à une corde d'une tension de 104 Kgf, soit d'une longueur de 10-14 cm. Dans ces conditions, la fréquence fondamentale est de 1024 Hz (Herz). Pour le diapason de 440 Hz il fallait une corde de 30 cm tendue à 172 Kgf. Il « suffit » donc d'un changement - drastique - d'échelle pour passer des cordes de piano à des objets microscopiques. Ceux-ci entrent dans le régime de la mécanique quantique et leur gamme de fréquences fournit un spectre de masses dans lequel il ne subsiste aucun paramètre d'ajustement : le spectre est à prendre ou à laisser ; c'est à la fois le tribut et le trophée de la théorie de cordes.
La théorie des cordes allait plus loin. Elle ne fournissait pas seulement le spectre : elle déterminait aussi les interactions entre les particules présentes dans ce dernier, permettant de calculer, sans autre concept ou ingrédient, des sections efficaces de diffusion7.
Il est remarquable que le spectre ainsi obtenu coïncidât avec celui des hadrons observés. Plus remarquable encore, les sections efficaces de diffusion calculées dans ce contexte reproduisaient bien les comportements typiques à haute énergie.
Le point faible de la description des hadrons et de l'interaction forte au moyen d'une théorie de cordes était le « principe de démocratie hadronique ». Pour entrer dans ce schéma, les hadrons devaient être tous élémentaires. Il fallait donc postuler l'existence d'une infinité de particules élémentaires.

Interaction forte et quarks
Des expériences du type de celles qui avaient permis à Rutherford de mettre en évidence la structure composite de l'atome, ont conduit au début des années 70 (expériences de diffusion profondément inélastique) à découvrir une structure interne aux nucléons et à tous les hadrons en général. Les modèles de partons revenaient en force et le modèle des quarks, introduit au début des années 60 par Gell-Mann et Zweig8, offrait une représentation fidèle des hadrons au moyen de quarks de saveurs variées.
Le proton et le pion comme états liés de quarks.
La dernière page des interactions fortes fut tournée avec la naissance de la chromodynamique quantique. C'est une théorie de jauge du même type que l'électrodynamique quantique, déjà mentionnée pour les interactions électromagnétiques. Une autre théorie de jauge, la théorie électrofaible, avait également été introduite au début des années 60 (Glashow, Salam et Weinberg) pour unifier les interactions faibles et électromagnétiques.
Le retour soudain des théories de jauge sur le devant de la scène était la conséquence d'un résultat théorique de grande envergure : la preuve de leur « renormalisabilité » (‘t Hooft, Veltman, 1970). C'est bien cette propriété qui permet de traiter les quantités infinies présentes par exemple dans les calculs de sections efficaces ; c'est aussi cette propriété qui manque à la relativité générale, laquelle devient inopérante au niveau microscopique.
Le succès plus particulier de la chromodynamique quantique comme théorie des interactions fortes était dû à une autre propriété, tout aussi appréciée de la communauté : la liberté asymptotique (Gross, Politzer, Wilczek, 1973). On observait expérimentalement que les « quarks étaient libres au sein des hadrons » ; c'est ce que la liberté asymptotique formulait.
D'autres découvertes ultérieures ont définitivement entériné les théories de jauge comme théories des interactions fortes et électrofaibles, au moins aux énergies accessibles expérimentalement. Les hadrons sont finalement tous composites et le principe de démocratie hadronique n'est pas violé. C'est l'hypothèse de leur « description pythagoricienne » qui est démentie.
Les cordes ne sont pas pour autant disparues du paysage de l'interaction forte. Elles en fournissent une représentation effective fidèle, qui est techniquement très puissante, meilleure même dans certains régimes. On parle de la « corde de la chromodynamique quantique » apparaissant comme véritable lien, ressort bandé entre les quarks au sein d'un méson. Les interactions entre mésons ont alors une image simple en terme de fusion ou rupture de cordes.
Deux pions interagissent pour donner deux kaons : l'annihilation des quarks d (fusion des deux cordes) est suivie par la création des quarks s (rupture de la corde intermédiaire). Les quarks u sont spectateurs.

Le renouveau des cordes : cordes et gravitation quantique
Grâce aux relations entre fréquence, masse et énergie, les fréquences de vibration d'une corde microscopique relativiste peuvent s'interpréter comme des particules. Celles-ci viennent avec leur masse et leur spin. Les interactions et autres propriétés de symétrie découlent simplement des critères de cohérence interne de la théorie. Cette démarche a été suivie dans les cordes des modèles duaux de l'interaction forte.
Il y a dans le spectre de la corde fermée une particule de masse nulle et de spin 2. Ces derniers sont les nombres quantiques cinématiques du graviton, particule médiatrice des interactions gravitationnelles au niveau microscopique. Le niveau microscopique pour la gravitation est l'échelle de Planck c'est-à-dire 10-33 cm. La gravitation pourrait donc apparaître en théorie des cordes à condition de modifier à nouveau l'échelle : passer de 10-14 à 10-33 cm, soit du GeV des cordes hadroniques à 1019 GeV, soit encore à une fréquence fondamentale de 1043 au lieu de 1024 Hz. Ceci nécessite une tension de 1043 Kgf !
La corde fermée semble donc contenir la gravitation, mais quelle gravitation ? La présence d'une particule de spin 2 et de masse nulle ne suffit à elle seule ni à étayer la thèse d'une description quantique de la gravitation, ni à assurer que cette dernière coïncide avec la relativité générale dans le régime classique. La corde fournit-elle vraiment une alternative à la relativité générale, valable dans tous les régimes ?
Cette question est dichotomique car le cadre de la théorie des cordes est très rigide. Les particules viennent avec leurs interactions et aucun artifice ne peut être introduit pour les corriger. Il est remarquable qu'aux grandes distances vis-à-vis de l'échelle de Planck, là ou l'interaction gravitationnelle est dans le régime classique, la corde fermée restitue la relativité générale. Il est tout aussi remarquable qu'à courte distance, elle s'affranchisse des divergences qui gâtent cette dernière.
Ces résultats, pressentis par Scherk et Schwarz en 1974 et 1975, ont constitué le tournant décisif de la théorie des cordes.

Cordes, membranes, théories de jauge et supersymétrie
La théorie des cordes remplace le concept d'objet ponctuel par celui d'objet étendu. Ce faisant, elle introduit une structure à la fois plus riche et plus contrainte.
Des objets ponctuels aux cordes, ouvertes ou fermées.
La liberté de choisir les ingrédients (particules, interactions, symétries et géométrie) à sa guise n'existe plus dans ce contexte. Evoluer : c'est tout ce qu'une corde peut faire, éventuellement en se scindant en deux, ou en fusionnant avec une autre corde. Cette évolution engendre une surface appelée « feuillet d'univers » de la corde.
Evolution d'une ou deux cordes fermées et leur feuillet d'univers.
La gravitation apparaît dans ces théories de manière naturelle, avec l'espoir d'en décrire les effets quantiques et de comprendre la cosmologie primordiale. Pour peu qu'on accepte l'extension vers les supercordes, qui est la seule fantaisie autorisée9 si on veut éviter la présence de tachyons - particules plus rapides que la lumière, on obtient non seulement le graviton, mais une pléthore de particules de matière et d'interaction. Il apparaît des symétries de jauge de grande unification et une symétrie supplémentaire : la supersymétrie d'espace-temps. A basse énergie (autrement dit à grandes distances), on retrouve toutes les propriétés des objets ponctuels et de leurs interactions.
Les théories de cordes font apparaître des objets encore plus exotiques, comme résultat de critères de cohérence interne : des membranes. Celles-ci sont très massives et donc inobservables avec les instruments dont on dispose actuellement. Il en existe de nombreux types qui apportent leurs propres contributions au spectre et aux interactions de la théorie.
Un exemple de membrane : une « D 2-brane » avec des cordes ouvertes accrochées dessus.
Trop, l'ennemi du trop peu
Depuis déjà de nombreuses années, le modèle standard des particules élémentaires est testé avec des instruments de la plus haute précision. Ce modèle contient 3 familles de leptons et 3 familles de quarks. Tous interagissent par voie électromagnétique et faible ; seuls les quarks sont sensibles aux interactions fortes. Toutes les interactions sont décrites au moyen de théories de jauge et leurs médiateurs sont les bosons intermédiaires massifs, le photon et les gluons. La théorie complète est parfaitement définie tant au niveau microscopique que macroscopique.

La nécessité d'aller au-delà du modèle standard a toutefois été pressentie bien avant la confirmation expérimentale du modèle standard lui-même. De nombreuses raisons sont évoquées, mais la plus objective est sans doute la découverte récente que les neutrinos, leptons neutres et réputés de masse nulle dans le modèle standard, sont en réalité massifs.
Deux grandes classes d'ingrédients ont été proposées depuis les années 70 pour bâtir un modèle dont le modèle standard serait l'approximation de « basse énergie ». Les théories de grande unification qui introduisent des symétries de jauge plus vastes, incorporant celles qui ont déjà été observées dans la nature. Et les extensions supersymétriques qui sont articulées autour d'une nouvelle symétrie, jamais encore observée. Les unes et les autres prévoient l'existence de particules nouvelles qui restent à découvrir.
En plus de la gravité, les théories de cordes10 incorporent tous ces nouveaux ingrédients sans additifs artificiels. Malheureusement, leur cohérence interne11 impose une autre contrainte dont les conséquences sont désastreuses pour leur pouvoir prédictif : ces théories sont définies à 10 dimensions12. La rigidité tant appréciée des théories de cordes lorsqu'elle fixe les paramètres, le spectre de particules, les symétries et les interactions, devient un handicap lorsqu'elle prédit un univers décadimensionnel !
Dimensions excédentaires compactes
Une dimension de temps et 9 d'espace : il y en a 6 de trop. Celles-ci doivent être compactes, refermées sur elles-mêmes à la manière de petits cercles, plus petits que tout ce que les instruments de la plus haute résolution peuvent discriminer.
Une dimension supplémentaire compacte : il faut regarder de près pour la découvrir.
L'introduction de dimensions supplémentaires compactes dans les théories de la gravitation n'est pas une nouveauté. Elle est même très ancienne, aussi ancienne que les premières tentatives d'unifier les forces de la nature. Les théories « unitaires » du premier quart du 20ème siècle avaient pour objet de formuler les deux forces jusqu'alors observées, la gravitation (relativité générale d'Einstein) et l'électromagnétisme (théorie relativiste de Maxwell), comme manifestations différentes d'une même interaction13. En introduisant un espace-temps de 5 dimensions, autorisant l'existence de champs gravitationnels uniquement, et en imposant qu'une des 4 dimensions d'espace était compacte (un « petit » cercle) on retrouvait dans l'espace-temps infini restant (de 3 dimensions d'espace et une de temps) des champs électromagnétiques et de gravitation.
Kaluza (1921) et Klein (1926) avaient développé ces idées et étudié en particulier quelles seraient les conséquences de l'existence de la petite dimension « inobservable à l'œil nu ». Leurs conclusions étaient les suivantes : pour chaque type de particule observée, il devait exister une infinité de répliques, de masses de plus en plus élevées et régulièrement espacées. L'incrément de masse carrée était en raison inverse du carré du rayon carré de la dimension compacte.
Le spectre de Kaluza-Klein : est un entier quelconque. Pour de l'ordre de 10-16 cm, l'incrément de masse carrée est de 4 103 GeV2.
Tant que les énergies restent petites vis-à-vis de l'incrément, le spectre de Kaluza-Klein reste invisible. Les forces observées sont la gravitation et l'électromagnétisme quadridimensionnels. Dès que l'énergie le permet, les premiers états de Kaluza-Klein apparaissent ; autrement dit la résolution devient suffisante pour « ouvrir » la dimension compacte. La distinction entre gravitation et électromagnétisme devient de plus en plus arbitraire : nous observons finalement la version unifiée de ces forces dans la gravité pure en cinq dimensions.
Dans le cadre de la théorie de cordes, l'introduction de dimensions supplémentaires compactes n'est pas une option. La théorie vient avec 6 dimensions excédentaires qu'il faut traiter comme compactes. D'une part, ceci confirme le caractère universel de la théorie : elle contient spontanément toutes les options introduites ça et là comme alternatives (grande unification, supersymétrie, Kaluza-Klein). D'autre part, cela offre la possibilité de choisir un schéma de compactification plutôt qu'un autre afin d'approcher au plus juste la physique des particules telle qu'elle apparaît dans les accélérateurs aujourd'hui.
Le revers de la médaille est l'ouverture vers une grande variété de modèles sans critère de principe pour choisir et l'apparition d'une nouvelle classe de particules (les modes de Kaluza-Klein) qui s'ajoutent à toutes celles encore hypothétiques (partenaires supersymétriques et bosons de jauge de grande unification).

Retour à la loi de Newton
On pourrait faire l'hypothèse que seule la force de gravitation transperce l'espace qui est transverse à notre espace-temps usuel, quadridimensionnel ; autrement dit, que deux objets éloignés l'un de l'autre dans une des dimensions excédentaires (par exemple situés en des points distincts d'un petit cercle) soient soumis à la seule force de gravitation. On peut accompagner cette hypothèse d'une autre, compatible, selon laquelle les particules de Kaluza-Klein seraient inobservables car n'interagissant pas avec les détecteurs. Une particule est visible si elle interagit avec un détecteur. In fine, ce dernier est sensible à l'interaction électromagnétique seulement.
Ce résultat n'est pas une propriété générique de la théorie de cordes et aucun modèle concret ne le démontre. Aucun principe ne s'y oppose non plus et certaines indications pourraient plaider en sa faveur. Dans le cadre de la théorie des cordes, c'est une hypothèse de travail qui relève plutôt de la phénoménologie des cordes.
Dans ces conditions, on peut s'affranchir de la contrainte de « petite » dimension compacte. Si les modes de Kaluza-Klein sont inobservables, rien n'empêche qu'ils soient « légers ». C'est-à-dire de masse inférieure au seuil disponible actuellement. Les dimensions compactes pourraient donc être de rayon supérieur à 10-16 cm.
Quelles sont alors les contraintes expérimentales ? Peut-on avoir des dimensions compactes de rayons arbitrairement grands ?

C'est à la gravitation de répondre à ces questions, puisque c'est elle qui, dans les hypothèses ci-dessus, subsiste dans l'espace transverse. A des échelles supérieures à 10-16 cm, l'interaction gravitationnelle est loin du régime quantique et pour les besoins de l'argument la loi de Newton suffit. La loi de Newton dépend de la dimension d'espace. Dans l'espace usuel tridimensionnel, cette loi est
En quatre dimensions infinies d'espace, elle devient
Lorsqu'une dimension parmi les quatre est compacte de rayon , la loi prend une forme plus compliquée. Elle se réduit cependant aux expressions de d = 3 ou d = 4 dimensions14 dans les limites respectives et .
La loi de Newton a été testée depuis longtemps dans le système solaire avec grande précision, à des échelles de l'ordre de 106 Km. L'expérience de Cavendish (1790) avait été réalisée avec des sphères distantes d'une vingtaine de centimètres. Des expériences à la Cavendish sont réalisées depuis les années 80, qui explorent la gravité depuis le centimètre jusqu'au millimètre, sans observer d'écart à la loi de Newton tridimensionnelle. Les projets pour les années à venir vont jusqu'au dixième de millimètre.
Se non è vero, è bene trovato
Il y a typiquement deux phases dans l'évolution d'une théorie ambitieuse. On commence par comprendre les phénomènes et donner une formulation abstraite à la théorie. On aborde ensuite les aspects techniques, la résolution des équations, la confrontation expérimentale.
Les progrès les plus spectaculaires de la théorie des cordes relèvent de la première phase : structure et universalité de la théorie, rôle des symétries, formulations duales ... Des questions fondamentales mais techniquement difficiles restent toutefois sans réponse complète ou satisfaisante. La supersymétrie est omniprésente dans la théorie et absente de la nature aux échelles accessibles. Elle doit être brisée à basse énergie et restaurée à haute énergie. Comment et à quelle énergie charnière ? Comment retrouver le modèle standard des particules ? La ressemblance des spectres et des interactions ne suffit pas. Il faut les 3 familles de particules, les 3 interactions et le procédé qui donne les masses justes. Rien de plus à basse énergie. Il faut aussi expliquer la dynamique des compactifications : pourquoi la nature choisit-elle une option de compactification plutôt qu'une autre ? Enfin, il faut profiter de ce pourquoi la théorie a eu tant de succès dans ses premiers jours : la gravitation quantique. Déterminer un modèle cosmologique cohérent et suffisant, comprendre le problème de la constante cosmologique, l'inflation, la platitude de l'univers. Comprendre la vraie nature des trous noirs et de leur rayonnement.
C'est l'absence d'idées qui est un échec, pas la difficulté. Les théories de jauge, le modèle électrofaible, la chromodynamique quantique ont été accueillis jadis avec le plus grand scepticisme. Et ce n'est pas seulement, voire pas du tout, par manque de faits expérimentaux qu'il a fallu deux dizaines d'années et un travail de missionnaire pour les adopter.

La théorie des cordes n'est pas de reste dans cette logique. Elle a ses détracteurs et ses adhérents qui oublient parfois, les uns et les autres, que la théorie des cordes n'est pas un credo. C'est une théorie physique difficile qui foisonne d'idées nouvelles. Cette théorie a permis des avancées conceptuelles importantes : holographie entre interaction gravitationnelle et interaction de jauge, thermodynamique des trous noirs ... Elle a irrigué, et continue de le faire, divers domaines des mathématiques et a inspiré de nombreuses voies de recherche d'importance grandissante en physique des hautes énergies et en cosmologie, qui évoluent désormais de façon autonome : la phénoménologie des branes et des cordes, les cosmologies alternatives au Big-bang, les univers branaires ...
Ces derniers développements ont progressivement intéressé les expérimentateurs. On trouve des projets de recherche de particules de Kaluza-Klein autour des futurs grands instruments (par exemple le LHC15 au CERN). Des expériences de gravité sub-millimétrique sont programmées pour mieux comprendre la loi de Newton et tester les idées de « grandes » dimensions compactes. On attend avec impatience les observations cosmologiques à venir : anisotropies du fond cosmologique, matière et énergie noires, constante cosmologique ... (expériences ARCHEOPS, WMAP16 ...).
La théorie des cordes offre un cadre précis et contraint. Son contenu en termes de symétries, interactions et spectre ne souffre aucun amendement. Il est remarquable qu'il reproduise malgré cela et avec une telle efficacité la gravitation ainsi que l'ensemble des concepts introduits depuis plus de trente ans en physique des particules : unification des forces et de la géométrie, supersymétrie, dimensions supplémentaires d'espace-temps ..., dans un cadre compatible avec les principes de la mécanique quantique. Cette situation n'est peut-être pas fortuite, mais ce n'est pas à la communauté d'en décider. Comme toutes les théories, celle des cordes n'échappera pas au couperet de la confrontation avec l'expérience. Mais si cette confrontation devait être au bénéfice des cordes comme constituants élémentaires de la matière, l'histoire aura donné raison à tous les penseurs, depuis Pythagore jusqu'à Kepler, dans leur quête de l'harmonie des sphères célestes.

 

  VIDEO       CANAL  U         LIEN

 
 
 
  LE REFROIDISSEMENT D'ATOMES PAR DES FAISCEAUX LASER
 

 

 

 

 

 

 

LE REFROIDISSEMENT D'ATOMES PAR DES FAISCEAUX LASER

En utilisant des échanges quasi-résonnants d'énergie, d'impulsion et de moment cinétique entre atomes et photons, il est possible de contrôler au moyen de faisceaux laser la vitesse et la position d'un atome neutre et de le refroidir à des températures très basses, de l'ordre du microKelvin, voire du nanoKelvin. Quelques mécanismes physiques de refroidissement seront passés en revue, de même que quelques applications possibles des atomes ultra-froids ainsi obtenus (horloges atomiques, interférométrie atomique, condensation de Bose-Einstein, lasers à atomes, etc.).

Texte de la 217e conférence de l’Université de tous les savoirs donnée le 4 août 2000.
Le refroidissement des atomes par laser par Claude Cohen-Tannoudji
Introduction
Au cours des deux dernières décennies, des progrès spectaculaires ont été réalisés dans notre maîtrise du mouvement des atomes. En faisant interagir ces atomes avec des faisceaux laser de direction, de fréquence et de polarisation convenablement choisies, nous pouvons maintenant contrôler la vitesse de ces atomes, réduire leurs mouvements d’agitation désordonnée, en quelque sorte les assagir, ce qui revient à diminuer leur température. Ces nouvelles méthodes portent le nom de «refroidissement laser». On sait également depuis peu contrôler la position des atomes et les maintenir confinés dans de petites régions de l’espace appelées « pièges ».
Le sujet de cet exposé est le refroidissement laser. Son objectif est double. Je voudrais tout d’abord expliquer en termes très simples comment fonctionne le refroidissement laser. Lorsqu’un atome absorbe ou émet de la lumière, il subit un recul. Comment peut-on utiliser ce recul pour ralentir et refroidir des atomes ? Je voudrais également dans cet exposé passer en revue les principales motivations de ces travaux, les nouvelles perspectives qu’ils ouvrent et essayer de répondre à quelques interrogations : À quoi peuvent servir les atomes ultrafroids ? Quels problèmes nouveaux permettent-ils d’aborder ? Quelles nouvelles applications peut-on envisager ?
Pour ceux d’entre vous qui ne sont pas familiers avec la physique des atomes et du rayonnement, j’ai pensé qu’il serait utile de commencer cet exposé par un rappel succinct de quelques notions de base très simples sur les photons et les atomes, sur les mécanismes d’absorption et d’émission de photons par les atomes. J’aborderai ensuite la description de quelques mécanismes physiques à la base du refroidissement laser : le recul de l’atome émettant ou absorbant un photon, ce qui se passe lorsqu’on place l’atome dans un faisceau laser résonnant, comment les reculs successifs que subit alors l’atome permettent de le ralentir et de le refroidir. Je terminerai enfin mon exposé en passant en revue quelques applications de ces travaux : les horloges à atomes froids, d’une extrême précision, puis l’interférométrie atomique qui utilise des phénomènes d’interférence résultant de la superposition des ondes de de Broglie atomiques, et enfin ces nouveaux états de la matière qui sont nommés condensats de Bose-Einstein. L’apparition, à des températures très basses, de ces nouveaux objets ouvre la voie vers de nouvelles applications comme les lasers à atomes qui sont analogues à des lasers ordinaires dans lesquels les ondes lumineuses seraient remplacées par des ondes de de Broglie.
Quelques notions de base
La lumière
La lumière est un objet d’études qui a toujours fasciné les physiciens et les scientifiques en général. Elle est apparue successivement au cours des siècles comme un jet de corpuscules ou comme une onde. Nous savons aujourd’hui qu’elle est à la fois une onde et un ensemble de corpuscules.
La lumière est tout d’abord une onde électromagnétique, c’est-à-dire un champ électrique et un champ magnétique oscillant à la fréquence ν et se propageant dans le vide à une vitesse
considérable c = 3×108 m/s. Comme toute onde, la lumière donne naissance à des phénomènes d’interférence. Lorsqu’on superpose deux ondes différentes d’égale amplitude,
1
en certains points, les ondes vibrent en phase et l’amplitude est doublée, en d’autres points, les ondes vibrent en opposition de phase et l’interférence est destructive. Sur un écran, on peut ainsi apercevoir une succession de zones brillantes et de zones sombres appelées franges d’interférence.
La couleur de la lumière est liée à sa fréquence ν . Le spectre de fréquence des ondes électromagnétiques s’étend de quelques Hertz aux rayons X et gamma. La lumière visible ne couvre qu’une très petite région de ce domaine spectral. Il est possible d’analyser le contenu spectral d’un rayonnement grâce à des appareils dits dispersifs qui font subir à un rayon lumineux une déviation qui dépend de la fréquence. Ainsi, si l’on fait passer un rayon solaire à travers un prisme, ses différentes composantes de couleur sont déviées de manière différente et on observe ce que l’on appelle un spectre.
Au début du siècle, à la suite des travaux de Planck et d’Einstein, il est apparu que la lumière n’était pas seulement une onde, mais qu’elle était aussi une assemblée de corpuscules : les
« photons ». A une onde lumineuse de fréquence ν , sont ainsi associés des corpuscules, les photons, qui possèdent une énergie E = hν proportionnelle à ν , une quantité de mouvement
p = hν / c également proportionnelle à ν . Dans ces équations, c est la vitesse de la lumière,
ν sa fréquence et h une constante que l’on appelle la constante de Planck, introduite en physique par Planck il y a exactement 100 ans.
L’idée importante qui s’est dégagée au cours du siècle précédent est la dualité onde- corpuscule. La lumière est à la fois une onde et un ensemble de corpuscules. Il est impossible de comprendre les divers phénomènes observés en termes d’ondes uniquement ou de corpuscules uniquement. Ces deux aspects de la lumière sont tous deux indispensables et indissociables.
Les atomes
Les atomes sont des systèmes planétaires analogues au système solaire. Ils sont formés de particules très légères, « les électrons », particules de charge négative, qui gravitent autour d’une particule de masse beaucoup plus élevée, dont la charge est positive : « le noyau ». Pour comprendre le mouvement de ces électrons autour du noyau, les physiciens se sont vite rendu compte que la mécanique classique était inadéquate et conduisait à des absurdités. Ils ont alors « inventé » la mécanique quantique, qui régit la dynamique du monde à l’échelle microscopique. Il s’agit là d’une révolution conceptuelle aussi importante que la révolution de la relativité restreinte et de la relativité générale. Une des prédictions les plus importantes de la mécanique quantique est la quantification des grandeurs physiques, en particulier, la quantification de l’énergie.
Dans le système du centre de masse de l’atome, système qui coïncide pratiquement avec le noyau car le noyau est beaucoup plus lourd que les électrons, on observe que les énergies des électrons ne peuvent prendre que des valeurs discrètes, quantifiées, repérées par des
« nombres quantiques ». Pour illustrer la quantification de l’énergie, j’ai représenté ici le niveau fondamental d’énergie la plus basse, le premier niveau excité, le deuxième niveau excité.
2
E2 E1
E0
2e Niveau excité 1er Niveau excité
Niveau fondamental
Figure 1 : Niveaux d'énergie d'un atome. Chaque trait horizontal a une altitude proportionnelle à l'énergie du niveau correspondant.
Interaction matière-lumière
Comment un tel atome interagit-il avec la lumière ? Émission et absorption de lumière par un atome
Un atome, initialement dans un état supérieur Eb , peut passer de ce niveau à un niveau inférieur Ea . Il émet alors de la lumière de fréquence ν , plus précisément un photon d’énergie
hν , telle que Eb − Ea = hν . Autrement dit, l’énergie perdue par l’atome, lorsqu’il passe du
niveau Eb au niveau Ea , est évacuée par le photon d’énergie hν . La relation entre la perte
d’énergie de l’atome et la fréquence de la lumière émise n'est donc en fait que la traduction exacte de la conservation de l’énergie.
Eb
Ea
ν Eb −Ea =hν ν
Emission
Absorption
Eb
Ea
Figure 2 : Processus élémentaires d'émission (figure de gauche) et d'absorption (figure de droite) d'un photon par un atome.
Le processus inverse existe, bien sûr : le processus d’absorption de lumière par un atome. L’atome, initialement dans un état inférieur Ea peut passer dans un niveau supérieur Eb en
gagnant l’énergie hν du photon absorbé. En d’autres termes, l’atome absorbe un photon et l’énergie du photon qu’il absorbe lui permet de passer de Ea à Eb . Il apparaît ainsi clairement
que la quantification de l’énergie atomique sous forme de valeurs discrètes entraîne le caractère discret du spectre de fréquences émises ou absorbées par un atome.
La lumière : une source essentielle d’informations sur la structure des atomes 3
Un atome ne peut émettre toutes les fréquences possibles, il ne peut émettre que les fréquences correspondant aux différences des énergies de ses niveaux. Ce résultat est extrêmement important. Il montre en effet que la lumière est une source d’information essentielle sur le monde atomique. En effet, en mesurant les fréquences émises ou absorbées, on peut reconstituer les différences Eb − Ea et obtenir le diagramme d’énergie d’un atome.
C’est ce que l’on appelle la « spectroscopie ». Le spectre d’un atome varie d’un atome à l’autre. Les fréquences émises par l’atome d’hydrogène diffèrent de celles émises par l’atome de sodium, de rubidium ou de potassium. Le spectre de raies émises par un atome constitue en quelque sorte son « empreinte digitale » ou, pour utiliser des termes plus actuels, son
« empreinte génétique ». Il est possible d’identifier un atome par l’observation des fréquences qu’il émet. Autrement dit, en observant la lumière provenant de différents types de milieux, on peut obtenir des informations sur les constituants de ces milieux. Ainsi, en astrophysique, par exemple, c'est la spectroscopie qui permet de déterminer la composition des atmosphères planétaires et stellaires et d'identifier les molécules qui sont présentes dans l’espace interstellaire. L’observation du décalage des fréquences émises par des objets astrophysiques permet de mieux comprendre la vitesse de ces objets et de mesurer ainsi l’expansion de l’univers. L’observation du spectre de la lumière émise ou absorbée permet aussi d’étudier des milieux hostiles comme des plasmas ou des flammes et d’analyser in situ les constituants de ces milieux.
Durée de vie d'un état excité
Considérons un atome isolé, initialement préparé dans un état excité Eb . L’expérience montre qu’au bout d’un certain temps, très court, l’atome retombe spontanément dans un état
inférieur Ea , en émettant et dans n’importe quelle direction, un photon d’énergie
hν = Eb − Ea . Ce laps de temps, très court, à la fin duquel se produit le processus d'émission
est appelé la durée de vie de l’état excité Eb .
Il apparaît ainsi qu'un atome ne peut pas rester excité indéfiniment. La durée de vie de l’état excité, qui varie d’un atome à l’autre, est typiquement de 10-8 s, c’est-à-dire 10 milliardièmes de seconde.
Les mécanismes physiques
Après ces brefs rappels de notions de base, abordons maintenant la seconde partie de cet exposé qui traite des mécanismes physiques à la base du refroidissement laser.
Le recul de l’atome lors de l’émission ou de l’absorption d’un photon
(3a)
Eb Ea M u
hν / c
Ea
Eb
hν / c
4
Mu
(3b)
Figure 3 : Recul d'un atome lors de l'émission (figure 3a) ou de l'absorption (figure 3b) d'un photon par cet atome.
En physique, il y a une loi fondamentale qui est « la conservation de la quantité de mouvement ». Considérons un atome excité dans un état Eb supérieur, initialement immobile,
et supposons qu’à l’instant t = 0 , cet atome émette un photon, lequel a une quantité de mouvement hν / c . Dans l’état initial, l’atome étant tout seul et immobile, la quantité de
mouvement globale est nulle. Dans l’état final, comme le photon part avec une quantité de mouvement hν / c , l’atome recule avec la quantité de mouvement opposée Mv = −hν / c .
Vous avez certainement déjà vu, en réalité ou à la télévision, un canon tirer un obus : lorsque le canon tire un obus, il recule. De même, lorsqu’un atome émet un photon, il recule à cause de la conservation de la quantité de mouvement. Sa vitesse de recul est donnée par
vrec =hν/Mc.
Le même phénomène de recul s’observe lors de l’absorption. Considérons un atome dans un
état fondamental Ea , initialement immobile, et supposons qu’on envoie sur lui un photon : l’atome absorbe le photon et parvient à l’état excité. Il recule alors avec la même vitesse de
recul hν / Mc . De même, lorsqu’on tire une balle sur une cible, la cible recule à cause de la
quantité de mouvement qui lui est communiquée par le projectile.
Par ailleurs, nous savons que l’absorption de photon qui porte l’atome, initialement immobile, à l’état excité, est nécessairement suivie d’une émission puisque l’atome ne peut rester excité indéfiniment. Il retombe donc, au bout d’un temps qui est la durée de vie de l'état excité, dans l’état inférieur, en émettant spontanément un photon. Dans ce cycle absorption-émission au cours duquel l’atome absorbe un photon, recule puis émet un photon, la probabilité qu’il émette ce photon dans telle direction ou dans telle autre, dans un sens ou dans le sens opposé, est la même de sorte, qu’en moyenne, la vitesse qu’il perd lors de l’émission est nulle. Il s'ensuit donc que le changement de vitesse de l’atome est, en moyenne, uniquement lié au processus d’absorption et a pour valeur vrec = hν / Mc . Ce résultat est important pour la suite.
L’atome dans un faisceau laser
Essayons maintenant de comprendre comment réagit l’atome en présence, non pas d’un seul photon incident, mais d’un faisceau laser résonnant. Un flot de photons arrive alors sur lui. Il en absorbe un premier, monte dans l’état excité, retombe en émettant un photon, puis absorbe un second photon laser, monte dans l’état excité, retombe en émettant un autre photon , puis en absorbe un troisième et ainsi de suite. L’atome, ainsi plongé dans un faisceau laser, enchaîne les cycles absorption-émission sans pouvoir s’arrêter et, à chacun de ces cycles, sa vitesse change en moyenne de vrec = hν / Mc . Comme la durée de vie moyenne de l’atome
excité est de 10-8 s, il se produit de l'ordre de108 cycles absorption-émission par seconde, c’est-à-dire 100 millions de cycles par seconde ! A chacun de ces cycles, la vitesse de l’atome change de hν / Mc . Pour l'atome de sodium, le calcul de cette vitesse de recul donne 3cm/s.
Pour l'atome de césium, on obtient 3mm/s. Ces vitesses sont très faibles, comparées par exemple aux vitesses des molécules de l'air qui nous entoure, qui sont de l'ordre de 300m/s. C'est pourquoi pendant longtemps les changements de vitesse d'un atome dûs aux effets de recul ont été considérés comme négligeables. En fait la situation est radicalement différente pour un atome dans un faisceau laser. Les cycles d'absorption-émission se répètent 100 millions de fois par seconde, générant un changement de vitesse par seconde de l'ordre de 100 millions de fois la vitesse de recul. On obtient ainsi des accélérations (ou décélérations) de l'ordre de 106 m/s2. A titre de comparaison, prenons un exemple dans la vie courante : quand
5
un objet tombe, l’accélération g qu'il subit du fait de la pesanteur est de 10 m/s2. Un atome de
sodium irradié par un faisceau laser est soumis à une accélération, ou une décélération, qui peut atteindre 105g. A titre de comparaison encore, cette accélération est 100 000 fois supérieure à celle, de l’ordre de 1g, que subit une voiture qui roule à 36 km/heure et qui s’arrête en 1 seconde.

Ralentissement d’un jet atomique
Cette force considérable qu’exerce la lumière sur les atomes, résultant de l'accumulation d'un très grand nombre de petits changements de vitesse, permet d’arrêter un jet atomique. Considérons un jet d’atomes sortant d’un four à la température de 300°K ou 400°K et se propageant à une vitesse de l'ordre de 1 km/s. Si ce jet est éclairé tête bêche par un faisceau laser résonnant, la force de pression de radiation que les atomes subissent va ralentir ces atomes, les arrêter et même leur faire rebrousser chemin. Un atome de vitesse initiale v0 de
1 km/s, soit 103 m/s, va être arrêté avec une décélération de 106m/s2, au bout de 10-3seconde, c’est-à-dire en une milliseconde. En une milliseconde, il passe ainsi de 1 km/s à zéro ! La distance L parcourue par l'atome avant qu'il ne s'arrête est donnée par une formule classique de terminale. Elle est égale au carré de la vitesse initiale divisée par deux fois la décélération subie. On obtient ainsi L = 0, 5m . On peut donc ainsi, dans un laboratoire, sur une distance
de l'ordre du mètre, arrêter un jet d’atomes avec un faisceau laser approprié. Evidemment, au fur et à mesure que les atomes sont ralentis, à cause de l’effet Doppler, ils sortent de résonance. Il faut donc modifier la fréquence du faisceau laser ou modifier la fréquence des atomes pour maintenir la condition de résonance et conserver la force à sa valeur maximale tout au long du processus de décélération.
Ralentir les atomes consiste à diminuer leur vitesse moyenne. Par contre la dispersion des valeurs de la vitesse autour de la valeur moyenne demeure en général inchangée. Il faut en fait faire une distinction très claire entre le mouvement d’ensemble caractérisé par la vitesse moyenne et le mouvement d’agitation désordonnée autour de la valeur moyenne de la vitesse. En physique, c’est cette vitesse d’agitation désordonnée qui caractérise la température. Plus un milieu est chaud, plus les vitesses d’agitation désordonnée de ses constituants sont élevées. Refroidir un système, cela veut dire diminuer les vitesses d’agitation désordonnée de ses constituants. Comment peut-on refroidir des atomes avec des faisceaux laser ?
Refroidissement Laser Doppler
(4a)
(4b)
Figure 4 : Principe du mécanisme de refroidissement laser par effet Doppler. Pour un atome au repos (figure 4a) les deux forces de pression de radiation s'équilibrent exactement. Pour
νL <νA νA νL <νA     Atome v=0
νapp <ν ν νapp >ν LLALL     Atome v v≠0
6
un atome en mouvement (figure 4b), la fréquence apparente de l'onde se propageant en sens opposé augmente et se rapproche de résonance. Elle exerce une force de pression de radiation plus grande que celle de l'onde qui se propage dans le même sens que l'atome et dont la fréquence apparente, diminuée par effet Doppler, s'éloigne de résonance.
Le mécanisme de refroidissement laser le plus simple utilise l'effet Doppler et a été proposé au milieu des années 70 par Hansch, Schawlow, Wineland et Dehmelt. L’idée est simple : l'atome est éclairé non plus par une seule onde laser, mais par deux ondes laser se propageant dans des sens opposés. Ces deux ondes laser ont même intensité, et même fréquenceνL , cette
fréquence νL étant légèrement inférieure à celle, νA , de la transition atomique. Que se passe-
t-il alors ? Si l’atome est immobile, avec donc une vitesse nulle, v = 0 , il n’y a pas d’effet Doppler. Dans ce cas, les deux faisceaux laser ont la même fréquence apparente. Les forces qu'ils exercent ont même module et des signes opposés. La force de pression de radiation venant de la gauche et la force de pression de radiation venant de la droite s’équilibrent donc exactement et l’atome n’est soumis à aucune force. Si l’atome se déplace vers la droite, avec une vitesse v non nulle, à cause de l’effet Doppler, la fréquence de l’onde qui se propage en sens opposé apparaît plus élevée. Cette fréquence apparente est ainsi augmentée et se rapproche de résonance. Le nombre de photons absorbés est alors plus élevé et la force augmente. Par contre, l'onde qui se propage dans le même sens que l'atome a sa fréquence apparente qui est diminuée par effet Doppler et qui s'éloigne donc de résonance. Le nombre de photons absorbés est alors moins élevé et la force diminue. A cause de l'effet Doppler, les deux forces de pression de radiation ne s'équilibrent plus. C'est la force opposée à la vitesse qui l'emporte et l'atome est ainsi soumis à une force globale non nulle, opposée à sa vitesse. Cette force globale F peut être écrite pour une vitesse v assez faible sous la forme
F = −α v où α est un coefficient de friction. Autrement dit, l’atome qui se déplace dans
cette configuration de deux faisceaux laser se propageant dans des sens opposés est soumis à une force de friction opposée à sa vitesse. Il se retrouve dans un milieu visqueux, que l’on appelle une mélasse optique par analogie avec un pot de miel. Sous l’effet de cette force, la vitesse de l’atome va être amortie et tendre vers zéro.
Refroidissement Sisyphe
L’étude théorique du mécanisme de refroidissement laser Doppler permet de prédire les températures qui pourraient être obtenues par un tel mécanisme et qu'on trouve de l’ordre de quelques centaines de microkelvin soit quelques 10-4 K. Ce sont des températures très basses comparées à la température ordinaire qui est de l’ordre de 300 K. En fait, quand, à la fin des années 80, on a pu mesurer ces températures de manière plus précise, on s’est aperçu, et ce fut une réelle surprise, que les températures mesurées étaient 100 fois plus basses que prévues, ce qui signifiait que d’autres mécanismes étaient en jeu. C’est l’un deux, le refroidissement Sisyphe que nous avons, mon collègue Jean Dalibard et moi-même, identifié et étudié en détail.
7
Figure 5 : l'effet Sisyphe
Sans entrer dans les détails d’un tel mécanisme, essayons d’en donner une idée générale. Les expériences de refroidissement laser utilisent des paires d’ondes laser se propageant dans des sens opposés (voir par exemple la figure 4). Ces ondes interfèrent et l’onde résultante a donc une intensité et une polarisation qui varient périodiquement dans l’espace. Or, on peut montrer que les niveaux d’énergie d’un atome sont légèrement déplacés par la lumière, d’une quantité proportionnelle à l’intensité lumineuse et qui dépend de la polarisation lumineuse. De plus, chaque atome possède en général plusieurs « sous-niveaux » d’énergie dans son état fondamental, qui correspondent chacun à une valeur différente d’une grandeur physique qui, comme l’énergie, est quantifiée. En l’occurrence, il s’agit ici du moment cinétique, l’atome pouvant être considéré comme une petite toupie qui tourne sur elle même. La figure 5 représente deux tels sous-niveaux dont les énergies sont modulées dans l’espace sous l’effet de la lumière. L’atome en mouvement se déplace donc dans un paysage de collines et de vallées de potentiel, paysage qui change suivant le sous-niveau dans lequel il se trouve. Considérons alors un atome se déplaçant vers la droite et initialement au fond d’une vallée de potentiel, dans un certain sous-niveau (Fig.5). Cet atome gravit la colline de potentiel et atteint le sommet de cette colline où il peut avoir une probabilité importante d’absorber et d’émettre un photon, processus à l’issue duquel il va se retrouver dans l’autre sous-niveau d’énergie, au fond d’une vallée. Le même scénario peut alors se reproduire, l’atome gravissant à nouveau une colline de potentiel avant d’atteindre le sommet et d’être transféré dans l’autre sous-niveau au fond d’une vallée, et ainsi de suite...Comme le héros de la mythologie grecque, l’atome est ainsi condamné à recommencer sans cesse la même ascension, perdant à chaque fois une partie de son énergie cinétique. Au bout d’un certain temps, il est tellement épuisé qu’il n’arrive plus à gravir les collines et se retrouve pris au piège au fond d’un puits. L’étude théorique et la comparaison avec les résultats expérimentaux ont conforté la réalité de ce mécanisme de refroidissement qui permet d'atteindre le microkelvin, c’est-à-dire une température de 10-6 K. Nous avons aussi mis au point au laboratoire d’autres méthodes, que je n’ai pas le temps d’approfondir aujourd’hui, qui permettent d'aller encore plus loin et d’atteindre le nanokelvin, c’est-à-dire 10-9 K, un milliardième de Kelvin.
À de telles températures, les vitesses des atomes sont de l’ordre du cm/s voire du mm/s alors qu’à température ordinaire, elles sont de l’ordre du km/s. Ces méthodes de refroidissement ont donc permis d’assagir considérablement le mouvement d'agitation désordonnée des atomes, de les rendre presque immobiles. Mentionnons également, sans entrer dans le détail des phénomènes, qu'on peut confiner les atomes dans une petite région de l'espace, appelée piège, grâce à l'utilisation de gradients d’intensité lumineuse ou de gradients de champ magnétique.
Description de quelques applications

Les horloges atomiques

8
∆ν ν0
Figure 6 : Principe d'une horloge atomique
Les applications des atomes froids et les nouvelles perspectives qu’ils ouvrent sont essentiellement liées au fait qu’ils sont animés d’une très faible vitesse. Cette particularité permet de les observer pendant une durée beaucoup plus longue. Or, en physique, une mesure est d’autant plus précise que le temps d’observation est plus long. On comprend très bien alors que, grâce à l’extrême précision des mesures pouvant être faites sur des atomes ultrafroids, des progrès ont pu être réalisés, dans la conception des horloges notamment. Rappelons tout d'abord en quoi consiste une horloge. C’est essentiellement un oscillateur, par exemple un quartz qui oscille à une certaine fréquence. Cependant, la fréquence d'un quartz livré à lui-même, fluctue au cours du temps. Elle accélère ou ralentit. Pour réaliser une horloge stable, il est donc nécessaire d'empêcher sa fréquence de dériver. Pour ce faire, on va maintenir la fréquence du quartz égale à la fréquence centrale d'une raie atomique.
Le principe de cette opération est schématisé sur la figure 6. Un oscillateur, piloté par le quartz, délivre une onde électromagnétique de même fréquence ν que la fréquence d’oscillation du quartz. Cette onde permet une « interrogation » des atomes utilisés pour stabiliser l’horloge. En l’envoyant sur les atomes et en balayant la fréquence ν du quartz, on observe une « résonance » quand ν coïncide avec la fréquence ν0 = (Eb − Ea ) / h
correspondant à l’écart d’énergie Eb − Ea entre deux niveaux d’énergie de cet atome. Un dispositif « d’asservissement » ajuste alors en permanence la fréquence ν du quartz pour la
maintenir au centre de la raie atomique. On stabilise ainsi ν en forçant ν à rester égal à ν0 .
En fait, c’est l’atome de césium qui est utilisé pour définir l’unité de temps, la seconde. Par convention internationale, la seconde correspond à 9 192 631 770 périodes d’oscillation
T0 =1/ν0 ,oùν0 estlafréquencecorrespondantàunecertainetransitionreliantdeuxsous- niveaux d’énergie de l’état fondamental de l’atome de césium. Cette fréquence ν0 est
universelle. Elle est la même pour tous les atomes de césium, où qu’ils se trouvent.
Les raies de résonance atomiques ne sont pas infiniment étroites. Elles ont une « largeur » ∆ν (voir figure 6). Plus cette largeur est faible, plus l’asservissement sera efficace, et plus l’horloge sera stable. Or, on peut montrer que la largeur d’une transition atomique reliant deux sous-niveaux de l’état fondamental d’un atome est inversement proportionnelle au temps d’observationTobs.PlusTobs estlong,pluslaraieestfine.Commelesatomesfroids
permettent d’allonger la durée de ce temps d’observation et par conséquence de disposer de raies très fines, il est aujourd’hui possible de réaliser des horloges extrêmement précises. Les horloges qui ont été réalisées jusqu’à ces dernières années utilisent des jets d’atomes de
9
césium se propageant à des vitesses de l’ordre du km/s, dans des appareils dont la longueur de l’ordre du mètre. Le temps d’observation accessible avec de tels systèmes est donc de l'ordre d’une milliseconde. Avec des atomes froids, il a été possible d’allonger ce temps d’observation par un facteur 100 et d’améliorer donc les performances des horloges atomiques par le même facteur. En fait, on n’utilise pas dans ces nouveaux dispositifs un jet horizontal d’atomes ralentis, car ils tomberaient rapidement dans le champ de pesanteur. Dans les nouvelles horloges, les jets atomiques sont verticaux. Plus précisément, les atomes refroidis dans une mélasse optique sont lancés vers le haut au moyen d’une impulsion laser et forment une sorte de « fontaine ». Ils traversent la cavité électromagnétique dans laquelle la résonance atomique est mesurée, une première fois dans leur mouvement ascendant, une seconde fois dans leur mouvement descendant quand ils retombent sous l’effet du champ de pesanteur. Les temps d’observation peuvent atteindre alors quelques dixièmes de seconde et être ainsi de l’ordre de cent fois plus longs que dans les horloges précédentes. De telles horloges à atomes froids ont été réalisées à Paris par un des mes collègues, Christophe Salomon en collaboration avec André Clairon du L.P.T.F-B.N.M. (Laboratoire Primaire du Temps et des Fréquences et Bureau National de Métrologie). Ils ont pu ainsi mettre au point, avec une fontaine haute de 1m , l’horloge la plus stable et la plus précise jamais réalisée dans le monde. Deux critères permettent de définir la qualité d’une horloge. Le premier, la stabilité, indique la fluctuation relative de fréquence au cours du temps. Elle est de l’ordre de quelques 10-16 pour un temps de Moyen-Âge de l’ordre de 104 s. Concrètement, cela signifie qu’une horloge atomique qui aurait été mise en marche au début de la création de l’univers ne serait, dix milliards d’années plus tard, désaccordée que de quelques secondes. Le second critère, c’est la précision. Si on réalise deux horloges, leur fréquence coïncide à 10-15 près, compte tenu des déplacements de fréquence liés à des effets parasites.
Ces horloges à atomes froids ont de multiples applications : le GPS ("Global Positioning System"), système de positionnement par satellite, la synchronisation des réseaux de télécommunications à haut débit, les tests de physique fondamentale (relativité générale, variation des constantes fondamentales). Pourrait-on encore augmenter leurs performances en réalisant des fontaines plus hautes, de 10 mètres par exemple ? En fait, un tel projet ne serait pas réaliste car le temps d'observation ne croît que comme la racine carrée de la hauteur et il faudrait blinder le champ magnétique terrestre (qui peut déplacer la fréquence de l'horloge) sur des distances de plus en plus grandes. La solution qui s’impose alors de manière évidente consiste à se débarrasser de la gravité et c’est la raison pour laquelle nous nous sommes engagés en France dans des expériences de microgravité depuis 1993. Ces expériences se déroulent à bord d’un avion avec lequel le pilote effectue plusieurs paraboles d’une vingtaine de secondes chacune. Pour ce faire, le pilote accélère l’avion à 45° en phase ascendante, puis coupe brutalement les gaz. Pendant les 20 secondes qui suivent l’avion est en chute libre et sa trajectoire est une parabole. A l'intérieur de l'avion, les objets flottent et ne tombent plus sur les parois de l'avion. Tout se passe comme s'il n'y avait plus de gravité. Puis le pilote remet les gaz et redresse la trajectoire de l'avion pour se remettre en phase ascendante et effectuer une nouvelle parabole. On a donc pu ainsi effectuer des tests sur le comportement des divers composants de l'expérience dans ces conditions, et leurs résultats ont montré qu’il est possible de réaliser des horloges à atomes froids en apesanteur. A la suite de ces tests, un accord a été signé pour prolonger l’expérience et placer une horloge atomique à atomes froids à bord de la station spatiale internationale qui doit être mise en orbite en 2004.

Les interférences atomiques
Depuis les travaux de Louis de Broglie, nous savons qu’à toute particule de masse M est associée une onde qu’on appelle « l’onde de de Broglie » dont la longueur d’onde λdB ,
10
donnée par l’équation λdB = h / M v , est inversement proportionnelle à la vitesse v . Plus la
vitesse est faible, plus la longueur d’onde de de Broglie est grande. Les atomes froids qui sont animés de faibles vitesses ont donc de grandes longueurs d’onde de de Broglie et leur comportement ondulatoire sera par suite beaucoup plus facile à mettre en évidence. Considérons par exemple l’expérience des fentes de Young réalisée avec des ondes lumineuses. Une source lumineuse éclaire un écran percé d’une fente. La lumière issue de cette fente arrive sur une plaque percée de deux fentes en dessous de laquelle est placé un écran. L’onde lumineuse suit ainsi deux trajets passant par l’une ou l’autre de ces fentes avant d’arriver sur l’écran d’observation qui enregistre l’intensité lumineuse. Selon la position du point d’observation sur cet écran, les deux ondes qui arrivent en ce point et qui sont passées par les deux trajets possibles se superposent, en phase ou en opposition de phase. L’intensité de l’onde résultante varie donc entre une valeur élevée et une valeur nulle et on observe ce qu’on appelle « les franges d’interférence d’Young ».
Depuis quelques années, plusieurs expériences analogues ont été réalisées, non plus avec des ondes lumineuses, mais avec les ondes de de Broglie associées à des atomes froids. Des physiciens japonais de l’université de Tokyo, le Professeur Fujio Shimizu et ses collègues, ont ainsi réalisé une expérience tout à fait spectaculaire. Elle consiste à laisser tomber en chute libre un nuage d’atomes froids initialement piégés au-dessus d’une plaque percée de deux fentes. Après traversée des deux fentes, les atomes viennent frapper une plaque servant de détecteur et l’on observe une succession d’impacts localisés. Au début, la localisation de ces impacts semble tout à fait aléatoire. Puis, au fur et à mesure que le nombre d’impacts augmente, on constate qu’ils s’accumulent préférentiellement dans certaines zones et on voit apparaître nettement une alternance de franges brillantes avec des impacts très denses et de franges sombres avec très peu d’impacts. Cette expérience illustre parfaitement la dualité onde-corpuscule. Les atomes sont des corpuscules dont on peut observer l’impact localisé sur un écran de détection. Mais en même temps, il leur est associé une onde et c’est l’onde qui permet de calculer la probabilité pour que le corpuscule se manifeste. Comme l’onde associée aux atomes peut passer par les deux fentes de la plaque, elle donne naissance au niveau de l’écran de détection à deux ondes qui interfèrent et qui modulent donc spatialement la probabilité de détection de l’atome. On est là au cœur de la mécanique quantique, de la dualité onde-corpuscule qui régit le comportement de tous les objets physiques.

La condensation de Bose-Einstein
Depuis quelques années, des progrès spectaculaires ont été réalisés dans un autre domaine : la condensation de Bose-Einstein. A température très basse et à densité suffisamment élevée, l’extension spatiale des ondes de de Broglie associée à chaque atome devient plus grande que la distance moyenne entre deux atomes de sorte que les paquets d’ondes se recouvrent et interfèrent. Il apparaît alors un phénomène nouveau, qu’on appelle « la condensation de Bose- Einstein » : Tous les atomes se condensent dans le même état quantique, le niveau fondamental du puits qui les contient. Ce phénomène, prévu il y a longtemps par Bose et Einstein, joue un rôle important dans certains fluides, comme l’helium superfluide. Il a été observé également il y a cinq ans, pour la première fois aux Etats-Unis, sur des systèmes gazeux, formés d’atomes ultrafroids. Il fait actuellement l’objet de nombreuses études, tant théoriques qu’expérimentales dans de nombreux laboratoires.
L’ensemble des atomes condensés dans l’état fondamental du piège qui les contient porte le nom de « condensat ». Tous les atomes sont décrits par la même fonction d’onde. On obtient ainsi une onde de matière géante. De tels systèmes quantiques macroscopiques ont des propriétés tout à fait originales : cohérence, superfluidité, qui ont pu être observées et étudiées en grand détail. Plusieurs groupes s’efforcent également d’extraire d’un condensat de Bose- Einstein un faisceau cohérent d’atomes, réalisant ainsi un « laser à atomes », qui peut être
11
considéré comme l’équivalent, pour les ondes de de Broglie atomiques, des lasers mis au point, il y a trente ans, pour les ondes électromagnétiques . Quand de telles sources cohérentes d’ondes de de Broglie atomiques deviendront opérationnelles, on peut raisonnablement penser qu’elles stimuleront un développement spectaculaire de nouveaux champs de recherche, comme l’interférométrie atomique, la lithographie atomique.

Conclusion
L’étude des propriétés de la lumière et de ses interactions avec la matière a fait faire à la physique des progrès fantastiques au cours du XXe siècle. Ces avancées ont eu plusieurs retombées. Elles ont donné lieu à une nouvelle compréhension du monde microscopique. La mécanique quantique est née. La dualité onde-corpuscule est maintenant une évidence. De nouvelles sources de lumière, les lasers, sont apparues.
J’espère vous avoir convaincu que la lumière n’est pas seulement une source d’information sur les atomes mais également un moyen d’agir sur eux. On sait maintenant « manipuler » les divers degrés de liberté d’un atome, contrôler sa position et sa vitesse. Cette maîtrise accrue de la lumière et de la matière ouvre aujourd’hui de nouvelles perspectives à la recherche . De nouveaux objets d’étude sont apparus, comme les ondes de matière, les lasers à atomes, les systèmes quantiques dégénérés, dont les applications, encore insoupçonnées, verront le jour demain, au XXIe siècle.

Pour en savoir plus :
http://www.lkb.ens.fr/recherche/atfroids/tutorial/welcome.htm
De la lumière laser aux atomes ultrafroids.
Des explications simples sur le refroidissement et le piégeage d’atomes par laser et les applications de ce champ de recherche.
http://www.ens.fr/cct
Le cours de Claude Cohen-Tannoudji au Collège de France
Etude et analyse des travaux de recherche récents sur la Condensation de Bose-Einstein
L’auteur remercie Nadine Beaucourt pour son aide dans la rédaction de ce texte à partir de l’enregistrement de la conférence et Nicole Neveux pour la mise en forme du manuscrit.

 

VIDEO       CANAL  U         LIEN
 

 
 
 
  PHYSIQUE ET MÉCANIQUE
 

 

 

 

 

 

 

PHYSIQUE ET MÉCANIQUE


Forte de sa maturité, la mécanique des solides n'en est que plus sollicitée par de nombreux défis à relever dans le futur. Les enjeux sont multiples : depuis la connaissance fondamentale, jusqu'à la conception et la caractérisation de nouveaux matériaux, en passant par la maîtrise de l'hétérogénéité de milieux à comportement complexe, en passant par l'exploitation de l'imagerie bi voire tridimensionnelle via l'analyse de champ, ou encore la prédiction de la variabilité ou de la fiabilité des solides et des structures. Dans toutes ces dimensions, physique et mécanique sont indissociablement liées, s'interpellant et dialoguant pour affronter plus efficacement ces challenges. Sur le plan expérimental, les mesures physiques, de plus en plus finement résolues spatialement, permettent d'aborder directement des réponses mécaniques inhomogènes, liées au désordre constitutif des matériaux ou à leur comportement non-linéaire dans des sollicitations complexes. Sur le plan de la modélisation numérique, l'ère du progrès purement algorithmique est sans doute révolu, pour laisser place à des approches performantes exploitant les problèmes multi échelles avec discernement. Enfin, en ce qui concerne la théorie, les progrès majeurs accomplis dans le passé dans l'homogénéisation des milieux élastiques permettent de mesurer les difficultés qui sous-tendent l'abord de l'hétérogénéité pour des lois de comportement complexes (plasticité, endommagement, et rupture, matériaux amorphes, milieux divisés ou enchevêtrés, …).

Texte de la 584 e conférence de l'Université de tous les savoirs prononcée le 6 juillet
2005
Par Stéphane ROUX[1] : Physique et Mécanique
Résumé :
Forte de sa maturité, la mécanique des solides n'en est que plus sollicitée par de nombreux défis à relever. Les enjeux sont multiples : depuis la connaissance fondamentale, jusqu'à la conception et la caractérisation de nouveaux matériaux, en passant par la maîtrise de l'hétérogénéité de milieux à comportement complexe, l'exploitation de l'imagerie bi voire tri-dimensionnelle via l'analyse de champ, ou encore la prédiction de la variabilité ou de la fiabilité des solides et des structures. Dans toutes ces dimensions, physique et mécanique sont indissociablement liées, s'interpellant et dialoguant pour affronter plus efficacement ces challenges.
Sur le plan expérimental, les mesures physiques, de plus en plus finement résolues spatialement, permettent d'aborder directement des réponses mécaniques inhomogènes, liées au désordre constitutif des matériaux ou à leur comportement non-linéaire dans des sollicitations complexes. Sur le plan de la modélisation numérique, l'ère du progrès purement algorithmique est sans doute révolue, pour laisser place à des approches performantes exploitant les problèmes multi échelles avec discernement. Enfin, en ce qui concerne la théorie, les progrès majeurs accomplis dans le passé dans l'homogénéisation des milieux élastiques permettent de mesurer les difficultés qui sous-tendent l'abord de l'hétérogénéité pour des lois de comportement complexes (plasticité, endommagement, et rupture, matériaux amorphes, milieux divisés ou enchevêtrés, ...).
Ainsi dans tous ces domaines, et alliée à la physique, la mécanique du solide est confrontée à de nombreux et nouveaux défis, et se doit de s'exprimer dans des applications à haut potentiel industriel, économique et sociétal.

1 Introduction

Loin des feux médiatiques de la physique nanométrique ou de l'interface physique-biologie aujourd'hui porteurs de tant d'espoir, la science mécanique et plus spécifiquement la mécanique des solides pourrait apparaître comme une discipline achevée, aboutie. Les défis du passé surmontés ne laisseraient la place aujourd'hui qu'à des formulations de lois constitutives validées, à des protocoles d'essais mécaniques balisés et encadrés par des normes précises, et à des techniques de calcul éprouvées capables de digérer les lois de comportement et les géométries les plus complexes. Les progrès à attendre pourraient ainsi apparaître comme incrémentaux, voire marginaux, et les performances des résultats numériques simplement asservies au progrès fulgurant des ordinateurs. Ainsi, la reine en second des sciences dures de la classification d'Auguste Comte, entre mathématiques et physique, quitterait le domaine de la science active pour simplement alimenter son exploitation applicative et technologique.
Nul ne saurait en effet nier les très substantiels progrès récents de cette discipline qui sous-tendent une telle peinture. Seule la conclusion est erronée ! Victime d'une polarisation excessive de l'éclairage médiatique, et conséquemment des fléchages de moyens de l'ensemble des instances de recherche, mais aussi coupable d'une communication trop pauvre, (ou lorsqu'elle existe trop focalisée sur les applications) la discipline n'offre pas au grand public et plus spécifiquement aux jeunes étudiants une image très fidèle des défis qui lui sont proposés pour le futur.
Forte de sa maturité, la mécanique est aujourd'hui fortement sollicitée par de nombreux enjeux :

*         Enjeux de connaissance fondamentale : la terra incognita dont les frontières certes reculent, offre toujours de larges domaines à explorer, et paradoxalement parfois sous des formes presque banales, comme les tas de sable ou les milieux granulaires.
*         Enjeux des progrès des techniques d'analyse : Le développement d'outils d'analyse toujours plus sensibles, plus précis, plus finement résolus en espace et en temps, donne accès à des informations extraordinairement riches sur les matériaux dont l'exploitation dans leurs conséquences mécaniques est de plus en plus prometteuse mais aussi exigeante.
*         Enjeux liés à l'élaboration, et à la conception de nouveaux matériaux. Au-delà de la caractérisation structurale, la physique et la chimie proposent toutes deux des moyens d'élaboration de matériaux extraordinairement innovants qui sont autant de défis non seulement à la caractérisation mécanique, mais aussi à la proposition de nouvelles conceptions d'architecture micro-structurale, jusqu'aux échelles nanométriques.
*         Enjeux des nouvelles demandes de la société et de l'industrie. Le risque, l'aléa sont de moins en moins tolérés. Ils sont en effet combattus par le principe de précaution, pour leur dimension politique et sociale. Ils sont aussi pourchassés dans le secteur de l'activité industrielle, où les facteurs de sécurité qui pallient nos ignorances sont de moins en moins légitimes. Le progrès à attendre porte sur l'estimation des durées de vie en service de pièces ou de structure, ou sur les développements d'une quantification précise de la probabilité de rupture ou de ruine, reposant sur une évaluation de l'ensemble des sources d'aléas, depuis la loi de comportement du milieu, jusqu'à ses chargements voire même sa géométrie. Enfin, puisque la modélisation numérique devient précise et fiable, la tolérance vis-à-vis des erreurs de prédiction diminue, et plus qu'une réponse moyenne dans un contexte incertain, commence à s'affirmer une demande d'évaluation de la probabilité que tel résultat dépasse tel ou tel seuil.

2 Enjeu de connaissance fondamentale
La modélisation numérique de la mécanique d'un matériau peut être abordée de différentes manières :

*         Au niveau le plus fondamental, la dynamique moléculaire ab initio , rend compte des atomes et de leurs interactions dans le cadre de la mécanique quantique. Aucun compromis n'est réalisé sur la précision de la description, mais en contrepartie le coût du calcul est tel que rarement le nombre d'atomes excède quelques centaines, et la durée temporelle vraie couverte par la simulation est typiquement de l'ordre de la dizaine à la centaine de picoseconde.
*         Pour accélérer très sensiblement cette description, il est possible de simplifier les interactions atomiques en introduisant des potentiels effectifs. La simulation de dynamique moléculaire est alors maintenant réduite à l'intégration dans le temps des équations classiques (non-quantiques) du mouvement des atomes. Les échelles accessibles sont maintenant de quelques millions d'atomes, sur des temps allant jusqu'à quelques nanosecondes.
*         Pour gagner encore en étendue spatiale et temporelle, en ce qui concerne les matériaux cristallins où la déformation plastique est due au mouvement de dislocations, une stratégie d'approche intéressante consiste à accroître le niveau d'intégration de l'objet élémentaire étudié, ici la dislocation, et décrire un ensemble de tels défauts d'un monocristal, leur génération à partir de sources, leurs mouvements selon des plans privilégiés, leurs interactions mutuelles et avec les parois, la formation de défauts, jusqu'à la formation d'une « forêt » de dislocations. Cette description s'appelle la « dynamique des dislocations ».
*         Enfin à une échelle beaucoup plus macroscopique, la mécanique des milieux continus peut être étudiée numériquement par la classique méthode des éléments finis pour des rhéologies ou des lois de comportement aussi complexes que souhaitées.
*         Citons encore des simulations utilisant des éléments discrets pour rendre compte par exemple du comportement de milieux comme des bétons à une échelle proche des différentes phases constitutives (granulats, ciment, ...). L'intérêt ici est de permettre de capturer la variabilité inhérente à la structure hétérogène du milieu. Dans le même esprit, les éléments discrets permettent de modéliser les milieux granulaires avec un réalisme impressionnant, alors même que la description continue n'est aujourd'hui pas encore déduite de cette approche.

2.1 Savoir imbriquer les échelles de description
Chacune des approches citées ci-dessus est aujourd'hui bien maîtrisée et adaptée à une gamme d'échelles spatiale et temporelle bien identifiée. Il reste cependant à mieux savoir imbriquer ces différents niveaux de description, et à trouver des descriptions intermédiaires pour des systèmes spécifiques. Ainsi par exemple de nombreux travaux ont permis d'ajuster au mieux les potentiels empiriques de la dynamique moléculaire pour assurer une continuité de description avec les approches ab initio. Les maillons manquants concernent par exemple les matériaux amorphes comme les verres où la dynamique des dislocations n'est évidemment pas pertinente, et où un écart important existe entre les échelles couvertes par Dynamique Moléculaire et par la mécanique des milieux continus. L'exemple type du problème qui rassemble nombre de défis est celui de la fracture. Par nature, seule l'extrême pointe de la fissure est sensible à des phénomènes fortement non-linéaires. L'idée naturelle est alors de construire une modélisation véritablement multi-échelle, en associant simultanément différentes descriptions selon la distance à la pointe de la fissure.
Les points durs au sein de cette imbrication de description concernent l'identification des variables qui sont pertinentes pour caractériser l'état à grande échelle et celles dont la dynamique rapide peut être moyennée. Lorsque le comportement du système est purement élastique, alors ce changement d'échelle peut être effectué dans le cadre de l'homogénéisation, et de fait la procédure est ici très claire. On sait parfaitement aujourd'hui moyenner contraintes et déformations, et on maîtrise parfaitement la disparition progressive de l'hétérogénéité pour atteindre la limite aux grandes échelles d'un milieu élastique déterministe. Pour les comportements autres qu'élastiques linéaires, cette homogénéisation non-linéaire reste beaucoup moins bien maîtrisée en dépit des avancées récentes dans ce domaine, et le territoire à conquérir est à la fois vaste et riche d'applications.
Un des sujets limitants proche du précédent est surprenant tant sa banalité est grande : le comportement des milieux granulaires reste aujourd'hui un sujet de recherche très actif. Le caractère paradoxal des difficultés qui surgissent dans le lien entre descriptions microscopiques (bien maîtrisées) et macroscopiques (dont les fondations sont aujourd'hui peu satisfaisantes, même si des modèles descriptifs opérationnels existent) provient de la combinaison de deux facteurs : d'une part des lois de contact simples ( frottement et contact) mais « peu régulières » au sens mathématique, d'autre part une géométrie (empilement de particules) qui introduit de nombreuses contraintes non-locales à l'échelle de quelques particules. Les milieux granulaires montrent des difficultés spécifiques qui représentent toujours un défi pour la théorie.
2.2 Non-linéarité et hétérogénéité : Physique statistique
Décrire le comportement de milieux hétérogènes est un défi auquel a été confrontée la mécanique depuis des années. Comme mentionné ci-dessus, dans le cadre de l'élasticité de nombreux résultats ont été obtenus. Pour les milieux périodiques comme pour les milieux aléatoires, des bornes encadrant les propriétés homogènes équivalentes ont été obtenues, tout comme des estimateurs des propriétés homogènes équivalentes prenant en compte de diverses manières des informations microstructurales. Plus encore que des caractérisations moyennes macroscopiques, des informations sur leur variabilité ou encore des évaluations locales peuvent être obtenues portant par exemple sur la valeur de la contrainte ou de la déformation dans chaque phase du milieu.
Pour des rhéologies plus complexes, l'essentiel reste à construire :
Dans le domaine de la plasticité, de manière incrémentale, nous nous retrouvons sur des bases comparables à celle de l'élasticité de milieux hétérogènes, et cette correspondance a bien entendu été exploitée. Cependant une difficulté supplémentaire apparaît, au travers de corrélation spatiale à très longues portées dans les fluctuations de déformation qui se couplent ainsi au comportement local. Or, ces corrélations sont très difficiles à gérer sur un plan théorique et représentent toujours un défi pour l'avenir. Dans cette direction, des développements récents sur des modélisations élastiques non-linéaires donnent des pistes très intéressantes.
L'endommagement est une loi de comportement de mécanique de milieux continus déterministe qui décrit les milieux susceptibles de développer des micro-fissures de manière stable et dont on ne décrit que la raideur locale pour différents niveaux de déformation. Cela concerne en particulier des matériaux quasi-fragiles, comme le béton ou les roches. Paradoxalement, le caractère hétérogène de ces milieux multifissurés à petite échelle n'est pas explicitement décrit, et de fait cela ne s'avère pas nécessaire. Il existe cependant une exception notable, à savoir, lorsque le comportement montre une phase adoucissante, où la contrainte décroît avec la déformation. Ceci concerne au demeurant aussi bien l'endommagement fragile évoqué ci-dessus, que l'endommagement ductile où des cavités croissent par écoulement plastique. Dans le cas d'un adoucissement, le champ de déformation a tendance à se concentrer sur une bande étroite, phénomène dit de « localisation ». Or cette localisation dans une vision continue peut s'exprimer sur des interfaces de largeur arbitrairement étroite. Cette instabilité traduit en fait une transition entre un régime de multifissuration distribuée vers un régime de fracture macroscopique. Le confinement de la déformation concentrée devrait faire intervenir des échelles de longueur microscopiques permettant de faire le lien entre une dissipation d'énergie volumique (décrit par l'endommagement) et une dissipation superficielle sur la fissure macroscopique. Dans cette localisation, le caractère hétérogène de la fissuration se manifeste de manière beaucoup plus sensible, et c'est dans ce trait spécifique que doit être recherchée la liaison vers une fracture macroscopique cohérente avec la description endommageante. Ce passage reste à construire de manière plus satisfaisante qu'au travers des modèles non-locaux aujourd'hui utilisés dans ce contexte. C'est à ce prix que l'on pourra rendre compte de manière satisfaisante des effets de taille finie observés (e.g. valeur de la contrainte pic en fonction de la taille du solide considéré).
Dans le domaine de la physique statistique, des modèles de piégeage d'une structure élastique forcée extérieurement et en interaction avec un paysage aléatoire d'énergie ont été étudiés de manière très générale. Il a été montré dans ce contexte que la transition entre un régime piégé pour un faible forçage extérieur vers un régime de propagation à plus forte sollicitation pouvait être interprétée comme une véritable transition de phase du second ordre caractérisée par quelques exposants critiques universels. La propagation d'une fracture dans un milieu de ténacité aléatoire, la plasticité de milieux amorphes, sont deux exemples de champ d'application de cette transition de dépiégeage. Ce cadre théorique fournit potentiellement tous les ingrédients nécessaires à la description de la fracture des milieux hétérogènes fragiles ou de la plasticité des milieux amorphes, et en particulier ces modèles proposent un cadre général de la manière dont la variabilité de la réponse disparaît à la limite thermodynamique d'un système de taille infinie par rapport à la taille des hétérogénéités. La surprise est que cette disparition progressive des fluctuations se fait selon des lois de puissance dont les exposants sont caractéristiques du phénomène critique sous-jacent. La physique statistique peut donc donner un cadre général au rôle des différentes échelles mais sa déclinaison à une description cohérente de ces lois de comportement prenant en compte le caractère aléatoire de la microstructure reste pour l'essentiel à construire.

3 Enjeu des nouvelles techniques d'analyse
Ces vingt dernières années ont vu aboutir des progrès substantiels dans les techniques d'analyse, en gagnant dans la sensibilité, dans la diversité des informations recueillies et dans leur résolution spatiale et temporelle. Ces nouvelles performances permettent d'accéder à des mesures de champs dont l'exploitation sur un plan mécanique représente un nouveau défi.
3.1 Nouvelles imageries
Les microscopies à force atomique ( AFM) et à effet tunnel ( STM) permettent aujourd'hui dans des cas très favorables d'atteindre la résolution atomique. En deçà de ces performances ultimes, l'AFM permet de résoudre une topographie de surface avec des résolutions de quelques nanomètres dans le plan et de l'ordre de l'Angstrom perpendiculairement dans des conditions très courantes. Cet instrument, exploitant les forces de surface, permet de travailler selon différents modes (contact, non-contact, friction, angle de perte de la réponse mécanique, ...), ce qui donne accès, au-delà de la topographie, à des informations supplémentaires sur la nature des sites de surface.
La microscopie électronique en transmission ( TEM) permet, elle aussi, d'atteindre l'échelle atomique et représente un moyen d'analyse dont les performances progressent sensiblement .La préparation des échantillons observés reste cependant lourde et limite son utilisation à des caractérisations structurales de systèmes spécifiques.
A de plus grandes échelles, il est aujourd'hui possible d'utiliser des spectrométries ( Raman, Brillouin, Infra-rouge) dotées de résolutions spatiales qui selon les cas peuvent atteindre l'ordre du micromètre. Ces informations sont pour l'essentiel relatives à la surface de l'échantillon analysé, intégrant l'information sur une profondeur variable. Sensibles à des modes vibrationnels locaux, le signal renseigne sur la composition chimique ou la structure locale à l'échelle de groupements de quelques atomes.
Ces imageries ne sont plus même limitées à la surface des matériaux, mais permettent aussi une imagerie de volume. La tomographie de rayons X donne accès à des cartes tridimensionnelles de densité. En exploitant la puissance des grands instruments comme à l'ESRF, il est possible d'augmenter la résolution de cette technique pour atteindre aujourd'hui typiquement un ou quelques micromètres. Bien entendu, la taille de l'échantillon analysé dans ce cas est sensiblement inférieure au millimètre.
De manière beaucoup plus banale, l'acquisition d'images optiques digitales ou de film vidéo s'est véritablement banalisée, dans un domaine où l'accroissement de performance est aussi rapide que la chute des coûts, rendant très facilement accessible cette technologie. Il en va de même de la thermographie infra-rouge permettant l'acquisition de champs de température avec des résolutions spatiales et temporelles qui s'affinent progressivement.
3.2 Que faire avec ces informations ?
Ces développements instrumentaux de la physique nous conduisent dans l'ère de l'imagerie, et si nous concevons aisément l'impact de ces mesures dans le domaine de la science des matériaux, l'accès à ces informations fines et spatialement résolues entraîne également de nouveaux défis à la mécanique du solide. En effet, en comparant des images de la surface de solides soumis à différents stades de sollicitation, il est possible par une technique dite de corrélation d'image, d'extraire des champs de déplacement. La philosophie générale consiste à identifier différentes zones entre une image référence et une de l'état déformé en rapprochant au mieux les détails de ces zones et de repérer ce faisant le déplacement optimal. A partir de cette mesure point par point, une carte ou un champ de déplacement peuvent ainsi être appréciés. Le fait de disposer d'un champ au lieu d'une mesure ponctuelle (comme par exemple par un extensomètre ou une jauge de déformation) change notablement la manière dont un essai mécanique peut être effectué. L'information beaucoup plus riche permet de cerner l'inhomogénéité de la déformation et donc d'aborder la question de la relation entre déformation locale et nature du milieu. Il manque cependant une étape pour que cette exploitation soit intéressante : Quelle est la propriété élastique locale qui permet de rendre compte du champ de déplacement dans sa globalité ? Il s'agit là d'un problème dit « inverse » qui reçoit une attention accrue dans le domaine de la recherche depuis une vingtaine d'années. L'exploitation rationnelle de cette démarche permet de réaliser un passage homogène et direct depuis l'essai mécanique expérimental et sa modélisation numérique, exploitable pour le recalage ou l'identification de lois de comportement.
Citons quelques applications récentes ou actuelles de ces techniques d'imagerie avancées :

*         Fracture de matériaux vitreux imagée par AFM

En étudiant la surface d'un échantillon de verre lors de la propagation lente d'une fissure en son sein, par AFM, il est possible de mettre en évidence des dépressions superficielles que l'on peut interpréter comme la formation de cavités plastiques en amont du front de fracture. Si un comportement plastique à très petite échelle n'est pas une totale surprise, même pour des matériaux fragiles, cette mise en évidence est un exploit expérimental hors du commun qui repose sur les progrès de ces techniques d'imagerie.

*         Comportement plastique de la silice amorphe

La silice vitreuse et dans une moindre mesure la plupart des verres montrent lors de leurs déformations plastiques certains traits qui les distinguent des matériaux cristallins : Leur déformation plastique possède une composante de distorsion (habituelle) et une de densification (moins usuelle). Pour décrire l'indentation de ces matériaux et à terme l'endommagement superficiel qui accompagnera les actions de contact et le rayage, il est important d'identifier une loi de comportement cohérente. La difficulté est que lors d'une indentation, cette densification a lieu à des échelles qui sont typiquement d'une dizaine de micromètres. Ce n'est que très récemment qu'il a été possible d'obtenir des cartes de densification à l'échelle du micron en exploitant la micro-spectrométrie Raman. Ici encore, cette avancée expérimentale majeure n'a été rendue possible que par la grande résolution spatiale maintenant accessible.

*         Détection de fissures et mesure de leur ténacité

Par microscopie optique, il est possible d'observer la surface d'échantillon de céramique à des échelles microniques. Cette résolution est largement insuffisante pour y détecter des fissures dont l'ouverture est inférieure à la longueur d'onde optique utilisée. La corrélation d'image numérique aidée par notre connaissance a priori des champs de déplacements associés à la fracture (dans le domaine élastique) permet de vaincre cette limite physique et d'estimer non seulement la position de la fissure mais aussi son ouverture avec une précision de l'ordre de la dizaine de nanomètres.

*         Comportement de polymères micro-structurés

Les polymères en particulier semi-cristallins peuvent montrer des organisations microscopiques complexes. L'étude par AFM de la déformation locale par corrélation d'image en fonction de la nature de la phase permet de progresser dans l'identification de l'origine des comportements macroscopiques non-linéaires et leur origine microstructurale. La faisabilité de cette analyse vient à peine d'être avérée.
4 Enjeu des nouveaux matériaux
Au travers des exemples qui précèdent, nous avons déjà eu l'occasion d'évoquer des problématiques liées directement aux matériaux (milieux granulaires, matériaux amorphes, milieux quasi-fragiles, ...). Le développement de nouveaux matériaux fortement appelé par les besoins industriels, et par la maîtrise croissante des techniques d'élaboration, tant chimique que physique, pose sans cesse de nouveaux défis à l'appréciation de leurs performances mécaniques. Ceci est d'autant plus vrai que ces nouveaux matériaux sont de plus en plus définis, conçus ou formulés en réponse à une (ou plusieurs) fonction(s) recherchée(s). Cette orientation de pilotage par l'aval, sans être véritablement nouvelle, prend une place croissante dans la recherche sur les matériaux, par rapport à une approche plus « classique » où la connaissance de matériaux et de leur mode de synthèse se décline en une offre de fonctions accessibles.
4.1 Matériaux composites et nano-matériaux
L'ère des matériaux composites n'est pas nouvelle, et l'on sait depuis longtemps associer différents matériaux avec des géométries spécifiques permettant de tirer le meilleur bénéfice de chacun des constituants. Pour ne citer qu'un seul exemple, pas moins de 25 % des matériaux constitutifs du dernier Airbus A380 sont des composites, et cette proportion croît sensiblement dans les projets en développement. Au-delà de la sollicitation des différentes phases associées, le rôle crucial des interfaces a été vite compris et le traitement superficiel des fibres ou inclusions du matériau composite a été mis à profit pour moduler les propriétés globales ( arrêt de fissure par pontage et déflexion du front, modulation du report de charge après rupture).
Dans ce cadre, les nano-matériaux ne changent guère cette problématique générale. Leur taille peut, le cas échéant, justifier d'une très grande surface développée, et donc exacerber le rôle des interfaces et des interphases. Par effet de confinement, ces interphases peuvent également démontrer de nouvelles propriétés originales par rapport à leur correspondant volumique. Enfin, en réduisant la taille des objets constitutifs, leurs interactions vont facilement conduire à la formation d'agrégats ou de flocs. Cette propriété peut être soit subie soit exploitée pour dessiner une architecture idéale ou atteindre une nouvelle organisation (e.g. auto-assemblage).
4.2 Matériaux fibreux/Milieux enchevêtrés
Parmi les matériaux à microstructure, les milieux fibreux contenant des fibres longues d'orientation aléatoire se distinguent des milieux hétérogènes habituellement considérés de par la complexité géométrique de l'organisation des différentes phases à l'échelle du volume élémentaire représentatif. Que la géométrie gouverne alors la réponse mécanique ne donne cependant pas une clef facile pour résoudre ces fascinants problèmes.
4.3 Couches minces : Tribologie Frottement adhésion
La surface et le volume jouent souvent des rôles très différents selon les propriétés recherchées, et c'est donc naturellement qu'une voie prometteuse pour réaliser un ensemble de propriétés consiste à recouvrir la surface d'un solide par une (voire plusieurs) couche(s) mince(s). Concentrer la nouvelle fonction dans un revêtement superficiel permet d'atteindre un fort niveau de performance pour une faible quantité de matière. Ainsi par exemple sur verre plat, sont le plus souvent déposés des empilements de couches minces permettant d'accéder à des fonctions optiques, thermiques, de conduction électrique, ... spécifiques. En parallèle, il est important dans la plupart des applications de garantir la tenue mécanique du matériau ainsi revêtu.
Le comportement de ces couches minces dans des sollicitations de contact ponctuel et de rayage est donc crucial et souligne l'importance de la tribologie et de l'adhésion, sujets couverts par des conférences récentes dans le cadre de l'Université de tous les savoirs 2005 présentées par Lydéric. Bocquet et Liliane Léger respectivement.
4.4 Couplages multiphysiques
La mécanique n'est souvent pas une classe de propriétés indépendante des autres. De nombreux couplages existent entre élasticité et thermique, électricité, magnétisme, écoulement en milieu poreux, capillarité, adsorption, réactivité chimique ... La prise en compte de ces couplages devient stratégique dans la description et surtout la conception de matériaux « intelligents » ou « multifonctionels ». Ici encore, on se trouve vite confronté à un large nombre de degrés de libertés où il est important de savoir trier les variables (maintenant couplant paramètres mécaniques et autres) et les modes qui conditionnent les plus grandes échelles de ceux qui ne concernent que le microscopique. Les stratégies d'approche du multi-échelle et du multi-physique se rejoignent ainsi naturellement.
4.5 Vieillissement
La maîtrise du vieillissement des matériaux est l'objet d'une préoccupation croissante dans l'optique particulière du développement durable. Cette problématique fait partie intégrante des couplages multi-physiques que nous venons de citer si nous acceptons d'y adjoindre une dimension chimique. La composante de base est essentiellement la réactivité chimique parfois activée par la contrainte mécanique (comme dans la corrosion sous contrainte, la propagation sous-critique de fissure, ou certains régimes de fatigue), mais aussi le transport lui aussi conditionné par la mécanique. La difficulté majeure de ce domaine est l'identification des différents modes de dégradation, leur cinétique propre, et les facteurs extérieurs susceptibles de les influencer. En effet, il convient souvent de conduire des essais accélérés, mais la correspondance avec l'échelle de temps réelle est une question délicate à valider ... faute de temps ! Ici encore la modélisation est une aide précieuse, mais elle doit reposer sur une connaissance fiable des mécanismes élémentaires.
4.6 Bio-matériaux/bio-mimétisme
La nature a du faire face à de très nombreux problèmes d'optimisation en ce qui concerne les matériaux. De plus, confronté aux imperfections naturelles du vivant, les solutions trouvées sont souvent très robustes et tolérantes aux défauts. Faute de maîtriser l'ensemble des mécanismes de synthèse et de sélection qui ont permis cette grande diversité, nous pouvons déjà simplement observer, et tenter d'imiter la structure de ces matériaux. Cette voie, assumée et affirmée, est ce que l'on nomme le bio-mimétisme et connaît une vague d'intérêt très importante. Pour ne citer qu'un exemple, la structure des coquillages nous donne de très belles illustrations d'architectures multi-échelles, dotées d'excellentes propriétés mécaniques (rigidité et ténacité), réalisées par des synthèses « douces » associant chimies minérale et organique.
4.7 Mécanique biologique
Au-delà de l'observation et de l'imitation, il est utile de comprendre que les structures biologiques n'échappent pas aux contraintes mécaniques. Mieux, elles les exploitent souvent au travers des mécanismes de croissance et de différentiation qui, couplés à la mécanique, permettent de limiter les contraintes trop fortes et de générer des anisotropies locales en réponse à ces sollicitations. Exploiter en retour ce couplage pour influer sur, ou contrôler, la croissance de tissus biologiques par une contrainte extérieure est un domaine naissant mais certainement plein d'avenir.
5 Enjeu des nouvelles demandes/ nouveaux besoins
Puisque la maîtrise de la modélisation numérique est maintenant acquise en grande partie, pour tous types de loi de comportement ou de sollicitation, l'attente a cru en conséquence dans de nombreuses directions.
5.1 Essais virtuels
Le coût des essais mécaniques de structures est considérable car souvent accompagné de la destruction du corps d'épreuve. En conséquence, la pression est forte pour exploiter le savoir-faire de la modélisation, et ainsi réduire les coûts et les délais de mise au point. Dans le secteur spatial ou aéronautique, la réduction des essais en particulier à l'échelle unité a été extrêmement substantielle, jusqu'à atteindre dans certains cas la disparition complète des essais réels. S'y substitue alors « l'essai virtuel », où le calcul numérique reproduit non seulement l'essai lui-même, mais aussi des variations afin d'optimiser la forme, les propriétés des éléments constitutifs ou leur agencement. Cette tendance lourde se généralise y compris dans des secteurs à plus faible valeur ajoutée, où l'optimisation et la réduction des délais sont le moteur de ce mouvement.
5.2 Sûreté des prédictions
Si l'importance de l'essai mécanique s'estompe, alors il devient vite indispensable de garantir la qualité du calcul qui le remplace. Qualifier l'erreur globale, mais aussi locale, distinguer celle commise sur la relation d'équilibre, sur la loi de comportement ou encore sur la satisfaction des conditions aux limites peut être un outil précieux pour mieux cerner la sûreté de la prédiction. Cette mesure d'erreur ou d'incertitude peut guider dans la manière de corriger le calcul, d'affiner le maillage ou de modifier un schéma numérique d'intégration. Dans le cas de lois de comportement non-linéaires complexes, l'élaboration d'erreurs en loi de comportement devient un exercice particulièrement délicat qui requiert encore un effort de recherche conséquent compte-tenu de l'enjeu.
5.3 Variabilité Fiabilité
La situation devient plus délicate dans le cas où la nature du matériau, ses propriétés physiques, sa géométrie précise sont susceptibles de variabilité ou simplement d'incertitude. Bien entendu des cas limites simples peuvent être traités aisément par le biais d'approches perturbatives, qui (dans le cas élastique) ne changent guère la nature du problème à traiter par rapport à une situation déterministe. Pour un fort désordre (voire même un faible désordre lorsque les lois de comportement donnent lieu à un grand contraste de propriétés élastiques incrémentales), la formulation même du problème donne naturellement lieu à des intégrations dans des espaces de phase de haute dimensionalité, où rapidement les exigences en matière de coût numérique deviennent difficiles voire impossibles à traiter. Les approches directes, par exemple via les éléments finis stochastiques atteignent ainsi vite leurs limites. L'art de la modélisation consiste alors à simplifier et approximer avec discernement. Guidé dans cette direction par les approches multiéchelles qui ont eu pour objet essentiel de traiter de problèmes initialement formulés avec trop de degrés de liberté, nous devinons qu'une stratégie de contournement peut sans doute dans certains cas être formulée, mais nous n'en sommes aujourd'hui qu'aux balbutiements. Si l'on se focalise sur les queues de distributions, caractérisant les comportements extrêmes, peu probables mais potentiellement sources de dysfonctionnements graves, alors la statistique des extrêmes identifiant des formes génériques de lois de distributions stables peut également fournir une voie d'approche prometteuse.
Dans le cas des lois de comportement non-linéaires, comme l'endommagement, on retrouve une problématique déjà évoquée dans la section 2, certes sous un angle d'approche différent mais où les effets d'échelle dans la variabilité des lois de comportement aléatoires renormalisées à des échelles différentes demeure très largement inexplorée.
5.4 Optimisation
Quelle forme de structure répond-elle le mieux à une fonction imposée dans la transmission d'efforts exercés sur sa frontière ? Telle est la question à laquelle s'est attachée la recherche sur l'optimisation de forme. Des avancées récentes très importantes ont été faites dans le réalisme des solutions obtenues en prenant en compte de multiples critères. Ceux-ci incluent la minimisation de quantité de matière (mise en jeu dans les formulations premières du problème), mais aussi plus récemment des contraintes de réalisabilité de pièce via tel ou tel mode d'élaboration.
5.5 Contrôle
Parfois les sollicitations extérieures sont fluctuantes, et peuvent donner lieu à des concentrations de contraintes indésirables, ou encore à des vibrations proches d'une fréquence de résonance. Plutôt que de subir passivement ces actions extérieures, certains systèmes peuvent disposer d'actuateurs dont l'action peut potentiellement limiter le caractère dommageable des efforts appliqués. La question de la commande à exercer sur ces actuateurs en fonction de l'information recueillie sur des capteurs judicieusement disposés est au cSur du problème du contrôle actif. Ce domaine a véritablement pris un essor considérable en mécanique des fluides ( acoustique, et contrôle pariétal de la turbulence), et entre timidement aujourd'hui dans le champ de la mécanique des solides.
6 Conclusions
Ce très bref panorama, focalisé sur des développements en cours ou prometteurs, a pour but de montrer que la mécanique du solide est extraordinairement vivace. Confrontée à des défis nouveaux, elle voit ses frontières traditionnelles s'estomper pour incorporer des informations ou des outils nouveaux de différents secteurs de la chimie et de la physique. Elle se doit d'évoluer aussi sur ses bases traditionnelles, sur le plan numérique par exemple, en développant de nouvelles interfaces avec d'autres descriptions, (mécanique quantique, incorporation du caractère stochastique, couplages multiphysiques...), et en développant des approches plus efficaces pour traiter ne fut-ce qu'approximativement, des problèmes de taille croissante. On observe également que l'interface entre l'expérimental (mécanique mais aussi physique) et la modélisation numérique se réduit avec l'exploitation quantitative des nouveaux outils d'imagerie. Cette ouverture très nouvelle redonne toute leur importance aux essais mécaniques, domaine un peu délaissé au profit de la modélisation numérique.

7 Références
Le texte qui précède est consacré à un impossible exercice de prospective, qui ne doit pas abuser le lecteur, tant il est probable que, dans quelques années, ce texte n'offrira que le témoignage de la myopie du rédacteur. Pour tempérer ceci, et permettre à chacun de se forger une opinion plus personnelle, je ne mentionne pas ici de références. En revanche, le texte contient en caractère gras un nombre conséquent de mots clés, qui peuvent chacun permettre une entrée de recherche sur Internet, donnant ainsi accès à un nombre considérable d'informations, et d'opinions sans cesse mises à jour.



[1] E-mail : stephane.roux@saint-gobain.com

 

    VIDEO       CANAL  U         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 ] - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google