|
|
|
|
 |
|
Au coeur de la matière : les atomes |
|
|
|
|
|
Au coeur de la matière : les atomes
© F. Bournaud/CEA-Irfu
Un atome est constitué d'un noyau de protons et de neutrons, et d'un nuage d'électrons. Il est caractérisé par un numéro atomique qui correspond à son nombre de protons, qui est aussi celui de ses électrons.
Publié le 1 juillet 2014
ORIGINE ET DESTIN DES NOYAUX ATOMIQUES
La matière que nous connaissons constitue 5 % du contenu total de l’Univers. La plupart des atomes qui le composent (hydrogène, hélium et un peu de lithium) ont été formés dans ses premiers instants. C’est ce que l’on appelle la nucléosynthèse primordiale. Tous les noyaux atomiques stables ont été formés au cœur des étoiles par la réaction de fusion nucléaire qui conduit des noyaux légers à fusionner et former des noyaux plus lourds.
Au cours de leur existence, les étoiles créent ainsi des noyaux pouvant avoir jusqu’à 26 protons, c’est-à-dire des noyaux d’atomes de fer. A la fin de leur évolution, les étoiles les plus massives explosent en supernova. L’énergie considérable de cette explosion permet de synthétiser de nombreux noyaux plus lourds. Ceux qui sont stables, ou qui ont une très longue période radioactive, se retrouvent dans les nuages de gaz et de poussière à partir desquels de nouvelles étoiles se forment.
Ainsi, la Terre est composée de 32,1 % de fer, 30,1 % d’oxygène, 15,1 % de silicium, 3,9 % de magnésium, et de tous les autres éléments en proportions inférieures. Elle renferme aussi des isotopes instables (radioactifs) dont la désintégration régulière est à l’origine de son état thermique interne : potassium 40, uranium 238 et thorium 232 principalement.
Pour lire la suite consulter le LIEN
DOCUMENT cea LIEN
|
|
|
|
|
 |
|
Reconnaissance faciale : quand frugalité et performance font bon ménage |
|
|
|
|
|
Reconnaissance faciale : quand frugalité et performance font bon ménage
metamorworks/AdobeStock
Compact, performant et affichant la consommation énergétique la plus basse du marché, l'imageur autonome conçu par le CEA en partenariat avec STMicroelectronics, ouvre des perspectives dans les domaines de la domotique, du bâtiment ou de l’automobile.
PUBLIÉ LE 9 JUIN 2021
Déjà très impliqué dans le développement de technologies peu énergivores, le CEA vient de franchir une nouvelle étape dans sa démarche de sobriété énergétique avec un imageur autonome qui consomme 1000 fois moins d’énergie que les détecteurs actuellement sur le marché.
Imaginez. Posé sur une table, votre smartphone se débloque automatiquement dès que vous passez à proximité, sans la moindre action de votre part… et sans vider la batterie de façon prématurée ! Cela pourrait bientôt être une réalité. Une collaboration entre les instituts Leti et List du CEA et l’industriel STMicroelectronics, a en effet abouti à un prototype d’imageur unique au monde
Pour lire la suite consulter le LIEN
DOCUMENT cea LIEN
|
|
|
|
|
 |
|
atome (latin atomus, du grec atomos, qu'on ne peut couper) |
|
|
|
|
|
atome
(latin atomus, du grec atomos, qu'on ne peut couper)
Consulter aussi dans le dictionnaire : atome
Cet article fait partie du dossier consacré à la matière.
Constituant fondamental de la matière dont les mouvements et les combinaisons rendent compte de l'essentiel des propriétés macroscopiques de celle-ci. (Un corps constitué d'atomes de même espèce est appelé corps simple ou élément chimique.)
PHYSIQUE ET CHIMIE
Les composants de la matière
Le mot « atome » est aujourd'hui un paradoxe scientifique : en effet, les Grecs avaient désigné par ce terme, qui veut dire « indivisible », le plus petit élément, simple et stable, de la matière ; or on sait à présent qu’un atome est composé de particules plus petites : des électrons, des protons et des neutrons. Les protons et les neutrons, appelés nucléons, forment le noyau de l’atome et sont eux-mêmes composés de particules encore plus élémentaires : les quarks. La connaissance de cette structure ultime de la matière est à l’origine d’une révolution tant dans le domaine de la connaissance que dans celui des rapports entre les peuples (la fission de noyaux atomiques étant à la base des armes nucléaires).
Pour lire la suite, consulter le LIEN
DOCUMENT larousse.fr LIEN
|
|
|
|
|
 |
|
La mécanique quantique |
|
|
|
|
|
La mécanique quantique
Publié le 15 mai 2019
Dernière mise à jour : 03 juin 2022
Qu'est-ce que la mécanique quantique ? Pourquoi est-elle utilisée ? A quoi sert-elle ? Où la retrouve-t-on dans notre quotidien ? Petite introduction au monde quantique.
QU’EST-CE QUE LA MÉCANIQUE QUANTIQUE ?
A l’aube du XXe siècle, la naissance de la physique quantique révolutionne notre conception du monde : les physiciens réalisent que la physique classique, qui décrit parfaitement notre environnement quotidien macroscopique, devient inopérante à l’échelle microscopique des atomes et des particules. En effet, les atomes et les particules élémentaires de la matière, n’évoluent pas comme un système classique, où les quantités d’énergie échangées peuvent prendre n'importe quelle valeur. Pour un système quantique, l’énergie s’échange par valeurs discrètes ou « quanta ».
Par ailleurs, la physique classique décrit différemment un corpuscule (atome, particule) et une onde (lumière, électricité) tandis que la mécanique quantique confond les deux descriptions : un photon, un électron, un atome ou même une molécule sont à la fois onde et corpuscule.
Si, en physique classique, l’état d’un système est parfaitement défini par la position et la vitesse de l'ensemble de ses composants – il ne peut être alors que dans un seul état à un moment et à un endroit donné, il n’en va pas de même en physique quantique. Un système quantique, tel qu'une simple onde-corpuscule, peut se trouver dans une superposition cohérente d'états, qui traduit la potentialité de tous ses états possibles. Sa présence à un endroit donné, son énergie deviennent alors probabilistes : ainsi, un atome peut être à la fois dans son état fondamental stable et dans un état excité (c’est-à-dire possédant une énergie supérieure, acquise par exemple par l'absorption d'un photon). Un photon peut être à un endroit et à un autre en même temps. On ne peut être certain qu'il est en un seul lieu que si l'on effectue une mesure. Le processus de mesure impose alors à l’onde-corpuscule un état défini.
De ces découvertes, qui forment la première révolution quantique, découlent un certain nombre d’applications encore utilisées aujourd’hui : les lasers, les circuits intégrés ou encore les transistors, à la base du fonctionnement des appareils électroniques notamment.
Le chat de Schrödinger
Le physicien Schrödinger a utilisé une image devenue célèbre pour mettre en avant le côté paradoxal d’objets dont on ne peut pas connaître l’état à tout moment. Il a imaginé un chat « quantique », enfermé dans une boîte sans fenêtre en présence d’un poison déclenché par un processus quantique. Tant que la boîte n’est pas ouverte, on ne sait pas si le processus quantique a déclenché le mécanisme, le chat est à la fois mort et vivant avec des probabilités dépendant du processus. Bien sûr, quand on ouvre la boîte le chat est soit mort, soit vivant. En regardant à l’intérieur, on fait une mesure qui nous permet de connaître l’état quantique du système.
À QUOI SERT LA MÉCANIQUE QUANTIQUE
AUJOURD’HUI ?
Quelques effets sont emblématiques de la mécanique quantique :
* L’effet laser est obtenu dans un système où les électrons sont majoritairement dans un même état excité et se désexcitent tous ensemble en émettant cette lumière intense. Cette transition des électrons d'un niveau d'énergie à un autre est un processus quantique.
* La supraconductivité est la disparition de toute résistance électrique dans un conducteur. Elle apparaît lorsque les électrons, portant une même charge électrique, peuvent s’apparier et se condenser dans un unique état quantique.
* L’effet tunnel permet à des électrons de franchir une « barrière » de potentiel ce qui est strictement interdit en physique classique.
* Le spin est une propriété quantique sans équivalent classique, à l'origine des propriétés magnétiques de la matière.
* Télécharger le poster "Le microscope à effet tunnel"
Des physiciens cherchent à exploiter la richesse des états quantiques et à maîtriser leur mesure dans la perspective encore lointaine d’un ordinateur quantique.
Depuis le début des années 1980, la physique quantique a pris un nouveau tournant : c’est la deuxième révolution quantique, qui se poursuit encore aujourd’hui. En 1982, le physicien Alain Aspect et son équipe parviennent à démontrer la réalité du principe d’intrication quantique, concept fondamental de la physique quantique. Par ce phénomène, proposé dans le courant des années 1930 par Erwin Schrödinger et Albert Einstein, les particules constituant un système sont liés, et le restent quelle que soit la distance qui les sépare. Ainsi, pour une paire de photons, une mesure faite sur l’un modifiera instantanément l'état du second, même s'ils sont séparés d'une longue distance (le record de distance pour l'observation de l'intrication de deux photons a été atteint en 2020 dans le domaine de la cryptographie quantique : des physiciens chinois ont pu échanger un message secret sur 1 120 km). Cette propriété pourrait avoir des applications importantes dans le domaine de l’information quantique : cryptographie, téléportation de l'information ou encore l’ordinateur quantique.
Et le champ d’application de la physique quantique va bien au-delà : le formalisme de la mécanique quantique est utilisé par les chercheurs en nanosciences (chimie, optique, électronique, magnétisme, physique de l’état condensé) et par les physiciens des lois fondamentales de l’Univers (particules, noyau atomique, cosmologie).
Trois exemples d'application de la mécanique quantique
* Les diodes électroluminescentes (DEL) : la physique quantique permet de comprendre comment les diodes électroluminescentes (DEL ou LED en anglais) émettent de la lumière et pourquoi chaque DEL possède une couleur spécifique.
* Le microscope à effet tunnel : l’effet tunnel est utilisé dans le microscope du même nom. Dans un tel microscope, une pointe métallique est placée très proche d'une surface conductrice avec une différence de potentiel de quelques volts. Bien que sans contact électrique direct entre pointe et surface, un courant tunnel s'établit. Lors d'un balayage de la surface par la pointe à courant constant, l'enregistrement de la distance pointe-surface donne une image de la surface à la résolution atomique.
* Les orbitales atomiques : les électrons entourent les noyaux des atomes. La mécanique quantique décrit le nuage électronique sous la forme d'orbitales dont la forme reflète la probabilité de présence de chaque électron dans l'espace. Cette description sous forme d'orbitales permet de décrire et comprendre la façon dont les atomes se rassemblent pour constituer molécules ou solides.
DOCUMENT cea LIEN
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 ] - Suivante |
|
|
|
|
|
|