|
|
|
|
|
|
MEDECINE |
|
|
|
|
Auteur : sylvain Date : 24/03/2013 |
|
|
|
|
MEDECINE LIEN |
|
|
|
|
|
|
NEWS |
|
|
|
|
Auteur : sylvain Date : 24/03/2013 |
|
|
|
|
NEWS LIEN |
|
|
|
|
|
|
NANOTECHNOLOGIE ET TRANSISTORS |
|
|
|
|
Auteur : sylvain Date : 08/03/2013 |
|
|
|
|
Paris, 1er mars 2013
Des transistors à l'assaut de la troisième dimension
Les limites de miniaturisation des composants électroniques pourraient être plus éloignées que ce que l'on pensait. Une équipe du Laboratoire d'analyse et d'architecture des systèmes (LAAS–CNRS, Toulouse) et de l'Institut d'électronique, de microélectronique et de nanotechnologie (CNRS/Université Lille1/Université de Valenciennes et du Hainaut-Cambresis/Isen) viennent de construire un transistor de taille nanométrique au comportement exceptionnel pour un dispositif de cette dimension. Pour y parvenir, les chercheurs ont conçu une architecture originale en trois dimensions composée d'un réseau vertical de nanofils dont la conductivité est contrôlée par une grille de seulement 14 nm de longueur. Ces résultats, publiés dans la revue Nanoscale, ouvrent la voie à des alternatives aux structures planaires des microprocesseurs et des mémoires actuels. Ces transistors 3D permettraient ainsi d'accroître la puissance des dispositifs microélectroniques.
Les transistors, briques de base de la microélectronique, sont composés d'un élément semi-conducteur, dit canal, reliant deux bornes. Le passage du courant entre les bornes est contrôlé par une troisième borne appelée grille : c'est celle-ci qui, tel un interrupteur, détermine si le transistor est ouvert ou fermé. Au cours des 50 dernières années, la taille des transistors n'a cessé de se réduire à un rythme constant et soutenu, permettant la montée en puissance des appareils microélectroniques. Cependant, il est admis qu'avec les architectures de transistors planaires actuelles, la miniaturisation est proche de sa limite. En effet, au-delà d'une taille minimale, le contrôle du canal des transistors par la grille est de moins en moins efficace : on observe notamment des fuites de courant qui perturbent les opérations logiques réalisées par ces ensembles de transistors. Voilà pourquoi les chercheurs du monde entier étudient des alternatives permettant de poursuivre la course à la miniaturisation.
Les chercheurs du LAAS et de l'IEMN ont, pour la première fois, construit un transistor nanométrique véritablement en 3D. Le dispositif est constitué d'un réseau serré de nanofils verticaux d'environ 200 nm de longueur reliant deux plans conducteurs. Une grille, constituée de chrome, entoure complètement chaque nanofil et contrôle le passage du courant. Ainsi, les chercheurs ont obtenu un niveau de commande transistor très élevé pour un dispositif de cette dimension. La longueur de la grille est de seulement 14 nm, contre 28 nm pour les transistors des puces actuelles. Néanmoins, sa capacité à contrôler le passage du courant dans le canal du transistor est compatible avec les besoins de la microélectronique actuelle.
Cette architecture pourrait permettre de construire des microprocesseurs constitués d'un empilement de transistors. L'on pourrait ainsi augmenter considérablement le nombre de transistors dans un espace donné, et, par conséquent, augmenter les performances des microprocesseurs ou la capacité des mémoires. Un autre atout important de ces composants est que leur fabrication est relativement simple et ne nécessite pas de procédés lithographiques1 de haute résolution. De plus, ces transistors pourraient s'intégrer facilement aux éléments microélectroniques classiques utilisés actuellement par l'industrie.
Un brevet a été déposé pour ces transistors. Les scientifiques veulent à présent poursuivre leurs efforts en miniaturisant encore la taille de la grille. Celle-ci pourrait être inférieure à 10 nm tout en offrant encore un contrôle du transistor satisfaisant. De plus, ils veulent commencer à concevoir, de concert avec des industriels, les dispositifs électroniques futurs qui mettront à profit l'architecture 3D de ces transistors.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
BACTERIES |
|
|
|
|
Auteur : sylvain Date : 02/03/2013 |
|
|
|
|
Paris, 20 décembre 2012
Reproduire et comprendre l'évolution des bactéries dans un tube à essai
La capacité des bactéries à produire des mutations, et donc à s'adapter, évolue en fonction de leur environnement et de leur niveau d'adaptation. C'est ce que viennent de montrer des chercheurs du Laboratoire adaptation et pathogénie des micro-organismes (LAPM, CNRS/Université Joseph Fourier-Grenoble) (1), en collaboration avec le Génoscope (CEA/IG-Evry). Les mutations du génome des bactéries participent à leur capacité d'adaptation et sont, par exemple, responsables de l'émergence de bactéries multi-résistantes aux antibiotiques ou de bactéries pathogènes responsables d'infections nosocomiales. Comprendre l'évolution des mécanismes qui contrôlent l'apparition des mutations est donc essentiel pour améliorer la lutte contre ces micro-organismes. Ces résultats viennent d'être publiés dans la revue Proceedings of the National Academy of Science (PNAS).
Les mutations de l'ADN sont à l'origine des variations qui permettent l'évolution des organismes vivants. Elles peuvent avoir des effets positifs, négatifs ou neutres, et c'est l'équilibre entre ces différents effets qui va conduire à l'adaptation des organismes vivants à leur environnement. Comprendre comment la production de mutations varie au cours du temps est donc indispensable pour décrire les processus évolutifs.
L'équipe dirigée par Dominique Schneider au sein du LAPM a utilisé la plus longue expérience d'évolution en cours dans le monde pour appréhender cette question. Dans le cadre de ce projet, des populations bactériennes ont été initiées à partir d'une cellule unique d'Escherichia coli (« l'ancêtre ») et sont cultivées nuit et jour, 365 jours par an, depuis 1988. Les chercheurs effectuent des prélèvements à intervalles réguliers sur ces populations, et les conservent, ce qui permet d'obtenir de véritables archives fossiles vivantes et d'analyser leur évolution. Au cours de cette longue expérience qui représente aujourd'hui plus de 55 000 générations (ce qui, à l'échelle humaine, correspond à près de deux millions d'années), les chercheurs ont identifié une population de bactéries qui a vu sa capacité à produire des mutations augmenter de plus de 100 fois, constituant ce que les généticiens appellent une population hypermutatrice, avant de constater que cette capacité continuait à évoluer…
En pratique, les chercheurs ont séquencé l'intégralité du génome bactérien à différents temps au cours de l'évolution (171 clones bactériens au total, séquençage réalisé par le Génoscope). Les données de séquençage ont été intégrées à la plateforme MicroScope (2), développée au Génoscope, et comparées au génome de l'ancêtre. Après 20 000 générations, ils ont observé une augmentation très importante du nombre de mutations, la population étant devenue hypermutatrice. En effet, d'une moyenne d'environ 40 à 50 mutations par génome à 20 000 générations, les bactéries sont passées à une moyenne de plus de 700 mutations à 40 000 générations. Mais le plus étonnant est que cette évolution s'est produite en plusieurs étapes avec une augmentation massive du taux de mutation suivie d'une diminution de ce taux de mutation.
L'équipe de Dominique Schneider a pu décrypter les mécanismes moléculaires mis en jeu dans ce processus multi-étapes, en analysant la séquence des génomes entiers de ces bactéries. Au niveau évolutif, cette population bactérienne est passée successivement d'une étape où le taux de mutation était élevé, ce qui lui a permis de s'adapter à son environnement, à une étape où le taux de mutation a diminué mais est resté à un niveau intermédiaire, ce qui lui a permis de poursuivre son adaptation en conservant une probabilité plus élevée de « trouver » des mutations bénéfiques, tout en réduisant la proportion de mutations néfastes.
Grâce à cette expérience d'évolution en tube à essai, les chercheurs ont pu comprendre les différentes étapes qui président in vivo à l'apparition de bactéries mutantes. De telles bactéries hypermutatrices sont connues pour être associées à de graves problèmes de santé publique, comme l'apparition de maladies nosocomiales et de bactéries multi-résistantes aux antibiotiques, ou de certains types de tumeurs chez les eucaryotes (3). Les chercheurs espèrent que le décryptage de ce processus au niveau de génomes entiers va permettre de modéliser le comportement des bactéries pathogènes, de contrôler leurs capacités d'adaptation, et, à terme, de développer de nouveaux outils thérapeutiques pour faire face aux infections bactériennes.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 ] Précédente - Suivante |
|
|
|
|
|
|