|
|
|
|
|
|
LE MONDE QUANTIQUE AU TRAVAIL : L'OPTOÉLECTRONIQUE |
|
|
|
|
|
LE MONDE QUANTIQUE AU TRAVAIL : L'OPTOÉLECTRONIQUE
L'optoélectronique est une discipline scientifique et technologique qui a trait la réalisation et l'étude de composants mettant en jeu l'interaction entre la lumière et les électrons dans la matière. Ces composants, qui permettent de transformer la lumière en courant électrique et réciproquement, sont des instruments privilégiés pour comprendre le nature de la lumière et des électrons. Il est donc peu étonnant que ce soit le tout premier composant opto-électronique (la cellule photoélectrique) qui soit à l'origine de la découverte d'Albert Einstein de la dualité onde-corpuscule. Dans cette Conférence, nous décrirons comment ce concept fondateur de la Physique Quantique a permis de comprendre les propriétés électroniques et optiques de la matière. Nous décrirons comment ces propriétés quantiques sont mises en oeuvre dans les quelques briques de base conceptuelles et technologiques à partir desquelles tous les composants optoélectroniques peuvent être élaborés et compris. Nous décrirons enfin quelques exemples de ces composants optoélectroniques qui ont changé profondément notre vie quotidienne : - les détecteurs quantiques (caméscopes, cellules solaires, infrarouge…) - les diodes électroluminescentes (affichage, éclairage, zapettes, …) - les diodes laser (réseaux de télécommunication, lecteurs de CD-DVD, internet, …) Nous explorerons finalement quelques nouvelles frontières de cette discipline, qui est un des domaines les plus actifs et des plus dynamiques de la Physique à l'heure actuelle.
Transcription* de la 590e conférence de l'Université de tous les savoirs prononcée le 12 juillet 2005
Le monde quantique au quotidien : l'optoélectronique
Par Emmanuel Rosencher
Cet exposé propose de vous montrer comment la mécanique quantique, domaine abstrait, sophistiqué, voire ésotérique pour certains, est à la base de révolutions technologiques qui ont transformé notre quotidien. Nous montrerons tout d'abord comment la physique quantique est née de l'étude d'un composant optoélectronique (définissons l'optoélectronique comme étant l'étude de l'interaction qui a lieu entre la lumière et les électrons dans les solides). Nous montrerons ensuite comment la mécanique quantique a rendu la monnaie de sa pièce à l'optoélectronique en lui fournissant des briques de bases conceptuelles extrêmement puissantes, à partir desquelles un certains nombres de composants comme les détecteurs quantiques ou les émetteurs de lumière ont été réalisés. Nous présenterons enfin les défis actuels que l'optoélectronique tente de relever.
Là où tout commence : l'effet photoélectrique
Tout commence en 1887. Rudolph Hertz, célèbre pour la découverte des ondes Hertziennes, va découvrir l'effet photoélectrique, aidé de son assistant Philipp von Lenard. Cet effet va révolutionner notre compréhension de la lumière comme de la matière, bref, notre vision du monde. L'expérience qu'ils ont réalisée était pourtant on ne peut plus simple : deux plaques métalliques sont placées dans le vide. On applique à ces plaques une différence de potentiel. Le courant qui circule dans le système est mesuré. Comme les plaques métalliques sont placées dans le vide, les électrons n'ont pas de support pour passer d'une électrode à l'autre, et donc aucun courant ne peut circuler dans le système. Hertz décide alors d'illuminer une des plaques avec de la lumière rouge, il s'aperçoit que rien ne change. Par le hasard de l'expérience, il éclaire alors la plaque avec de la lumière bleue, et s'aperçoit cette fois qu'un courant commence à circuler. Il est important de noter que, même avec une grande intensité de lumière rouge, aucun courant ne circule, alors qu'une faible lumière bleue fait circuler le courant. Les deux savants concluent leur expérience par la phrase suivante, qui deviendra une des pierres fondatrices de la physique quantique : « il semble y avoir un rapport entre l'énergie des électrons émis et la fréquence de la lumière excitatrice. »
A la même époque, un autre grand savant, Max Planck, travaille sur un sujet totalement différent, à savoir le « spectre du corps noir » ( voir Figure 1): en d'autres termes, il étudie la lumière émise par des corps chauffés. Le fer, par exemple, une fois chauffé devient rouge. A plus haute température, il vire au jaune, puis au blanc. Max Planck étudie donc le fait que tous les corps chauffés vont avoir un comportement commun : à une température donnée, ils rayonneront principalement une certaine longueur d'onde. Par exemple, notre corps à 37°C émet des ondes à 10 mm (lumière infrarouge non visible). En revanche, à 5000°C (température correspondant à la surface du soleil), le maximum se déplace, le corps émet autour de 500 nm (jaune). Cette correspondance entre la température du corps noir et la nature de la lumière émise par ce corps va littéralement rendre fou toute une génération de physiciens qui n'arrivent pas à expliquer ce phénomène. Max Planck, au début du XXème siècle, déclarera à la société allemande de physique qu'il peut rendre compte de ce comportement. Pour cela, il doit supposer que la lumière arrive en paquets d'énergie et que chaque paquet d'énergie est proportionnel à la fréquence de la lumière, c'est-à-dire que l'énergie de chaque grain de lumière est le produit de la fréquence de cette onde par une constante, ridiculement petite (environ 6.10-34 J.s). S'il est persuadé d'avoir fait une grande découverte, Max Planck n'a pour autant pas la moindre idée de ce que sont ces « quanta » d'énergie qu'il a introduits dans son calcul.
figure1
Spectre du corps noir (le fer chauffé de la photo émet des longueurs d'onde réparties sur la courbe bleue, la courbe rouge est émise par un humain qui n'a pas de fièvre)
Pendant ce temps, à la société Anglaise de physique, Lord Kelvin fait son discours inaugural, où il déclare que toute la physique est constituée, la récente théorie ondulatoire de Maxwell rendant très bien compte du comportement de la lumière. Il ne reste plus que quelques phénomènes incompris, d'un intérêt secondaire. Parmi ces phénomènes incompris figurent évidemment le spectre du corps noir, et l'effet se produisant dans la cellule photoélectrique.
Albert Einstein va réaliser le tour de force de montrer que ces deux phénomènes ont une même origine, origine qu'il baptisera la dualité onde-corpuscule. L'hypothèse révolutionnaire d'Einstein est de dire que la lumière, considérée jusqu'alors comme une onde, est également une particule. A la fois onde et particule, la lumière véhicule ainsi une quantité d'énergie bien précise.
Le raisonnement d'Einstein se comprend bien sur un diagramme d'énergie, où est représentée l'énergie des électrons en fonction de leur position ( voir Figure 2). Pour être arraché du métal, un électron doit recevoir l'énergie qui lui permet d'échapper à l'attraction du métal. Cette énergie est appelée potentiel d'ionisation. Les électrons sont donc piégés dans le métal, et il leur faut franchir ce potentiel d'ionisation pour le quitter. L'hypothèse d'Einstein consiste à dire que la lumière est constituée de particules et que chaque particule a une énergie valant h.f, où h est la constante établie par Max Planck, et f la fréquence de la lumière. Si cette énergie h.f est inférieure au potentiel d'ionisation (comme c'est le cas pour la lumière rouge), aussi puissant que soit le faisceau de lumière, nous n'arracherons pas le moindre électron au métal. En revanche, si la lumière est bleue, la longueur d'onde est plus courte, ce qui correspond à une fréquence f plus grande, donc une énergie plus grande, les électrons vont alors acquérir l'énergie suffisante pour quitter le métal et aller dans le vide. Cette théorie permet donc d'expliquer le phénomène jusqu'alors incompris observé par Hertz et Leenard.
figure2
Diagramme d'énergie d'Einstein
Einstein ne se contente pas de cette explication, il propose une expérience permettant de vérifier son hypothèse. Si on mesure l'excès d'énergie des photons (représenté DE sur la Figure 2), c'est-à-dire si on mesure l'énergie des électrons une fois qu'ils ont été arrachés par la lumière, on doit pouvoir en déduire la valeur de la constante de Planck h.
La théorie d'Einstein est accueillie à l'époque avec fort peu d'enthousiasme. La physique semblait jusqu'alors bien comprise, la lumière était une onde, et on rendait compte de l'écrasante majorité des phénomènes observés. Et Einstein vient tout bouleverser ! De nombreux scientifiques vont donc tenter de montrer que sa théorie est fausse. Notamment Millikan, qui va passer 12 années de sa vie à tester la prédiction d'Einstein. Millikan reconnaîtra finalement son erreur : son expérience montrera bien que l'énergie en excès dans les électrons est proportionnelle à la fréquence de la lumière excitatrice, et le coefficient de proportionnalité est bien la constante de Planck h.
Einstein venait d'unifier deux phénomènes qu'a priori rien n'apparentait : la lumière émise par un corps chauffé, et l'excès d'énergie d'un électron émis dans le vide. Ce lien existe, et c'est la physique quantique.
On peut donc relier la longueur d'onde de la lumière à son énergie ( voir Figure 3). Ainsi, le soleil qui rayonne principalement dans le jaune, c'est-à-dire à des longueurs d'onde d'environ 500 nm émet des photons de 2 eV (électron-volt). Le corps humain à 37°C rayonne une onde à 10 mm, ce qui correspond à des photons d'énergie 0,1eV. Rappelons qu'un électron-volt correspond à l'énergie d'un électron dans un potentiel électrique de 1V.
figure3
Correspondance entre longueur d'onde de la lumière et énergie du photon
Les briques de base
Comme nous l'avons mentionné en introduction, la physique entre alors dans un cercle vertueux : la technologie (par la cellule photoélectrique) fournit à la physique un nouveau concept fondamental, la physique quantique va en retour développer des outils conceptuels extrêmement puissants qui vont permettre le développement des composants optoélectroniques que nous allons étudier.
Les Semi-conducteurs
Avant d'entrer dans ce cercle vertueux, un concept manque encore à la physique quantique. Il va être proposé par le français Louis de Broglie en 1925. Ce dernier fait le raisonnement suivant : Einstein vient de montrer que la lumière, qui est une onde, se comporte comme une particule. Que donnerait le raisonnement inverse? Autrement dit, pourquoi la matière (les atomes, les électrons, tout objet ayant une masse) ne se comporterait-elle pas également comme une onde ? De Broglie va montrer qu'on peut associer à l'énergie d'une particule matérielle une longueur d'onde. Il montre notamment que, plus la particule a une énergie élevée, plus sa longueur d'onde est faible. La correspondance entre énergie et longueur d'onde pour la matière différera cependant de celle pour les photons, car les photons n'ont pas de masse.
Partant de cette hypothèse, Wigner, Seitz et Bloch se demandent ce que devient cette longueur d'onde lorsque l'électron est dans la matière, où il est soumis à un potentiel d'environ 5V. Leur calcul leur montre que sa longueur d'onde est alors d'environ 5 angströms (1 angström valant 10-10 mètres)... ce qui correspond à peu près à la distance entre atomes dans la matière.
figure4
Comportement d'une onde électronique dans la matière et naissance de la structure de bandes
La physique quantique va alors donner une compréhension nouvelle et profonde du comportement des électrons dans la matière. Rappelons que la matière peut souvent être représentée par un cristal, c'est-à-dire un arrangement périodique d'atomes, distant de quelques angströms. Imaginons qu'une onde électronique (c'est-à-dire un électron) essaie de traverser le cristal. Si la longueur d'onde vaut 20 angströms, elle est très grande par rapport au maillage du cristal, et elle ne va donc pas interagir avec le cristal. Cette longueur d'onde va donc pouvoir circuler, on dira qu'elle est permise, et par conséquent l'énergie qui lui correspond est elle aussi permise (onde rouge sur la Figure 4). Il y aura un très grand nombre de longueur d'ondes permises, auxquelles correspondront des bandes d'énergies permises. En revanche, si la longueur d'onde de l'électron est de l'ordre de 5 angströms (onde bleue sur la Figure 4), c'est-à-dire de la distance être atomes, l'électron va alors résonner avec la structure du cristal, et l'onde ne va pas pouvoir pénétrer dans la matière. L'onde électronique est alors interdite dans la matière, et l'énergie qui lui correspond est également interdite dans la matière. Ainsi on voit apparaître, pour décrire les électrons dans la matière, une description en termes de bandes permises et de bandes interdites. Nous appellerons la bande permise de plus basse énergie (sur la figure 5) la bande de valence, et la bande permise au-dessus d'elle la bande de conduction.
A partir de cette structure de bandes, Pauli va montrer que les atomes peuplent d'abord les états de plus basse énergie. Ils vont ainsi remplir complètement la bande de valence, et laisser la bande de conduction vide. Il montre alors que dans une telle configuration les électrons ne peuvent pas conduire l'électricité.
figure5
Les électrons de la bande de valence, comme les pièces d'un jeu de taquin
Pour illustrer ses propos, comparons la matière à un jeu de taquin ( Figure 5). Rappelons que le taquin est un puzzle fait de pièces carrées et où ne manque qu'une pièce. C'est l'absence d'une pièce qui permet de déplacer les pièces présentes. Pour Pauli, une bande de valence pleine d'électrons, est comme un taquin qui n'aurait pas de trous : aucun élément ne peut bouger, car toutes les cases sont occupées. C'est pourquoi beaucoup de matériaux, notamment les semi-conducteurs (qui, comme leur nom l'indique sont de mauvais conducteurs), ne peuvent pas conduire le courant, leur bande de valence étant trop pleine. Pour conduire l'électricité, il va être nécessaire de prendre des électrons de la bande de valence, et de les envoyer dans la bande de conduction. Alors les rares électrons dans la bande de conduction auront tout l'espace nécessaire pour bouger, ils conduiront aisément le courant. De plus, ces électrons auront laissé de la place dans la bande de valence, ce qui revient, dans notre image, à enlever une pièce au taquin. Les électrons pourront alors bouger, mal, mais ils pourront bouger. Ce déplacement des électrons dans la bande de valence peut être réinterprété : on peut considérer qu'un électron se déplace pour occuper une place vacante, puis qu'un autre électron va occuper la nouvelle place vacante, et ainsi de suite... ou on peut considérer que nous sommes en présence d'un trou (une absence d'électron) qui se déplace dans le sens opposé au mouvement des électrons ! Cette interprétation nous indique alors que, dans la bande de valence, ce ne sont pas les électrons qui vont bouger, ce sont les « absences d'électrons », c'est-à-dire des trous, qui sont, de fait, de charge positive.
Wigner, Pauli et Seitz venaient de résoudre une énigme qui datait du temps de Faraday (1791-1867), où l'on avait observé des charges positives se déplaçant dans la matière sans avoir idée de ce que c'était. Il s'agit en fait des trous se déplaçant dans la bande de valence. Pour la suite, nous nous intéresserons donc aux électrons se trouvant dans la bande de conduction, et aux trous de la bande de valence.
Comment envoyer ces électrons de la bande de valence vers la bande de conduction ? En utilisant le photon ! Le photon va percuter un électron de la bande de valence et créer une paire électron-trou, c'est-à-dire qu'il va laisser un trou dans la bande de valence et placer un électron dans la bande de conduction. Il s'agit d'un phénomène d'absorption car au cours de ce processus, le photon disparaît. Il a été transformé en paire électron-trou.
Evidemment le mécanisme inverse est possible : si on arrive à créer par un autre moyen une paire électron-trou, l'électron va quitter la bande de conduction pour se recombiner avec le trou dans la bande de valence, et émettre un photon. La longueur d'onde du photon émis correspondra à l'énergie de la bande interdite ( energy gap en anglais). Il y a donc une correspondance fondamentale entre la couleur du photon émis et l'énergie de la bande interdite.
figure6
Gap d'énergie et distance inter-atomiques des principaux semi-conducteurs
La Figure 6 montre l'énergie de la bande interdite pour différents matériaux. On constate que certains matériaux se retrouvent sur la même colonne, c'est-à-dire qu'ils ont la même distance inter-atomique. C'est le cas par exemple de l'Arséniure de Gallium (GaAs) et de l'Aluminure d'Arsenic (AlAs). Etant des « jumeaux cristallographiques », il sera aisé de les mélanger, les faire croître l'un sur l'autre. En revanche, ils ont des bandes d'énergie interdite très différente. A partir de ce graphique, on peut donc conclure quel semi-conducteur conviendra à la lumière que l'on veut produire. Ainsi, la lumière rouge sera émise par le Phosphure de Gallium (GaP). Pour aller dans l'infrarouge lointain, un mélange entre CdTe et HgTe est cette fois préconisé.
Le dopage et la jonction P-N
Nous venons de présenter la première brique de l'optoélectronique, à savoir l'énergie de la bande interdite. La deuxième brique qui va nous permettre de réaliser des composants optoélectroniques va être le dopage. Comme nous l'avons dit précédemment, un semi-conducteur, si on n'y ajoute pas des électrons, conduit aussi bien qu'un bout de bois (c'est-à-dire plutôt mal !). Pour peupler la bande de valence, nous allons utiliser le dopage.
Nous nous intéresserons aux éléments des colonnes III, IV et V de la classification périodique des éléments de Mendeleïev (une partie en est représentée Figure 7). Le numéro de la colonne correspond au nombre d'électrons se trouvant sur la dernière couche électronique. Ainsi les éléments de la colonne IV, dits tétravalents, comme le Carbone et le Silicium, possèdent IV électrons sur leur dernière couche. Dans la colonne III (éléments trivalents), nous trouverons le Bore, et dans la colonne V (éléments pentavalents) se trouve le Phosphore.
figure7
Dopage de type P et dopage de type N
Regardons ce qui se passe si on introduit un élément pentavalent dans un cristal de Silicium. On peut dire que le Phosphore, tel l'adolescent dans une cour d'école, veut à tout prix ressembler aux copains. Ainsi, le Phosphore va imiter le Silicium et construire des liaisons électroniques avec 4 voisins. Il va donc laisser un électron tout seul. Cet électron va aller peupler la bande de conduction. C'est ce qu'on appelle le dopage de type N. Le Phosphore joue le rôle de Donneur d'électrons.
Le raisonnement est le même pour des éléments trivalents comme le Bore. Ce dernier va mimer le comportement du Silicium en créant 4 liaisons électroniques. Pour cela, il va emprunter un électron à la structure de Silicium, consommant ainsi un électron dans la bande de valence. Il crée donc un trou dans la bande de valence. Le dopage est dit de type P. Le Bore joue le rôle d'Accepteur d'électrons.
Le dopage n'est pas un processus aisé à réaliser. A l'heure actuelle, nous n'avons toujours pas trouvé le moyen de doper efficacement certains semi-conducteurs (c'est le cas du diamant par exemple). Pour le Silicium (Si) et l'Arséniure de Gallium (GaAs), le dopage est en revanche bien maîtrisé.
On va alors pouvoir réaliser des jonctions P-N ( Figure 8). Il s'agit en fait de juxtaposer un matériau dopé P avec un matériau dopé N. Dans la zone dopée N, le Phosphore a placé de nombreux électrons dans la bande de conduction. La zone dopée P quant à elle possède de nombreux trous dans la bande de valence. Nous sommes ainsi en présence délectrons et de trous qui se « regardent en chiens de faïence ». Ils vont donc se recombiner. Ainsi, à l'interface, les paires électrons trous vont disparaître, et laisser seules des charges négatives dans la zone dopée P, et des charges positives dans la zone dopée N. Ces charges fixes (qui correspondant en fait aux atomes dopants ionisés) vont créer un champ électrique. Cette jonction P-N sera au cSur de très nombreux composants optoélectroniques.
figure8
Jonction P-N: les électrons de la zone N se recombinent avec les trous de la zone P, laissant des charges nues dans une zone baptisée zone de charge d'espace. Les charges fixes induisent un champ électrique.
Le Puits Quantique
Dernière brique de l'optoélectronique que nous présenterons : le puits quantique. Ce dernier peut être considéré comme le fruit du progrès technologique. Dans les années 70-80, les ingénieurs étudient l'Ultra-Vide, c'est-à-dire les gaz à très basse pression (10-13 atmosphère). Comme il s'agit d'un milieu extrêmement pur, bien vite on se rend compte, que cela reproduit les conditions primordiales dans lesquelles les matériaux ont été créés. Dans un tel milieu, on va alors pouvoir « jouer au bon dieu » et empiler des couches d'atomes, créer des structures artificielles qui n'existent pas dans la nature.
Typiquement, il va être possible de réaliser des sandwichs de matériaux, où par exemple de l'Arséniure de Gallium (GaAs) serait pris entre deux tranches d'un matériau qui lui ressemble, AlGaAs (nous avons vu précédemment que AlAs et GaAs sont miscibles). Sur la photo ( Figure 9), issue d'un microscope électronique nous permettant d'observer les atomes, on voit que ces matériaux n'ont aucun problème à croître l'un sur l'autre. La couche de GaAs ne mesure que 20 angströms.
figure9
Puits quantique. En haut, sa composition. Au milieu une photo au microscope électronique d'une telle structure. En bas, diagramme d'énergie du puits quantique, la forme des oscillations de l'électron a également été représentée
Examinons le comportement de l'électron dans un tel milieu. Le GaAs a plus tendance à attirer les électrons que AlGaAs. L'électron se trouve piégé dans un puits de potentiel. C'est alors qu'intervient la mécanique quantique, réinterprétant le puits de potentiel en « puits quantique ». L'électron est une onde, une onde prisonnière entre deux murs (les barrières de potentiel formées par l' AlGaAs). L'électron ne va avoir que certains modes d'oscillation autorisés, comme l'air dans un tuyau d'orgue qui ne va émettre que des sons de hauteur bien définie.
Techniquement, il nous est possible de créer à peu près n'importe quel type de potentiel, puisqu'on est capable de contrôler l'empilement des atomes. Par exemple, plus on élargit le puits quantique, plus il y a de modes d'oscillation possibles pour l'électron, et plus il y a de niveaux d'énergies accessibles à l'électron. On peut ainsi synthétiser la répartition de niveau d'énergies que l'on souhaite.
Nous avons à présent un bon nombre d'outils de base que nous a fournis la mécanique quantique : la structure de bandes, le dopage et la jonction P-N qui en découle, et pour finir, le puits quantique. Nous allons à présent voir comment ces concepts entrent en jeu dans les composants optoélectroniques.
La détection quantique
Le principe de la photo-détection quantique (utilisé dans tous les appareils photo numérique) est extrêmement simple : il s'agit, à l'aide d'un photon, de faire transiter l'électron entre un niveau de base, où il ne conduit pas l'électricité, et un niveau excité où il va la conduire. Le semi-conducteur pur peut par exemple faire office de photo-détecteur quantique ( Figure 10): à l'état de base, il ne conduit pas le courant, mais un photon peut créer, par effet photoélectrique, une paire électron-trou et placer un électron dans la bande de conduction, permettant le transport du courant.
figure10
Deux mécanismes de détection quantique. A gauche, on utilise la structure de bande d'un semi-conducteur. A droite, un puits quantique.
Un puits quantique peut également réaliser cette fonction ( Figure 10): les électrons se trouvent piégés dans le puits quantiques, car la barrière d'AlGaAs les empêche de sortir, mais par absorption d'un photon, les électrons vont avoir l'énergie leur permettant de sortir du piège et donc de conduire le courant.
L'effet Photovoltaïque
Le détecteur quantique le plus répandu est la cellule photovoltaïque. Elle est constituée d'une jonction P-N. Imaginons que des photons éclairent la structure. Dans la zone ionisée (appelée zone de charge d'espace), ils vont alors créer des paires électron-trou. Mais cette région possédant un champ électrique du fait des charges fixes, les électrons vont être attirés par le Phosphore, les trous par le Bore, ce qui va générer un courant électrique.
figure11
Cellule photovoltaïque. En haut, la jonction P-N reçoit des photons qui créent des paires électron-trou. En bas, diagramme d'énergie montrant les électrons de la bande de conduction tombant dans la zone N, et les trous de la bande de valence remontant dans la zone P.
On peut représenter ce mécanisme sur un diagramme d'énergie ( Figure 11). Le champ électrique présent au niveau de la jonction P-N provoque une courbure de la bande de valence et de la bande de conduction. Le photon va créer une paire électron-trou. L'électron va glisser le long de la pente de la bande de conduction, et se retrouver dans la zone dopée N, tandis que le trou, tel une bulle dans un verre de champagne, va remonter la bande de valence et se retrouver dans la zone dopée P.
Les caméras CCD
Techniquement, il existe des technologies pour synthétiser ces minuscules détecteurs par millions en une seule fois. Ces détecteurs ont changé notre vie quotidienne. En effet, au cSur de tous les appareils photo et caméscopes numériques se trouve une matrice CCD ( charge coupled devices). Il ne s'agit pas exactement de jonctions P-N, mais d'une myriade de transistors MOS. Néanmoins les concepts physiques mis en jeu sont tout à fait analogues. Il s'agit d'une couche semi-conductrice de Silicium séparée d'une couche métallique par une couche isolante d'oxyde. Lorsqu'un photon arrive dans la zone courbée du diagramme de bande (c'est là encore, la zone de charge d'espace), une paire électron-trou est créée, les électrons vont s'accumuler à l'interface entre le semi-conducteur et l'isolant, il vont alors pouvoir être « évacués » par les transistors qui vont récupérer les « tas d'électrons » et se les donner, comme des pompiers se passant des bacs d'eau (d'où leur nom). Les matrices CCD actuelles ont des caractéristiques vertigineuses, contenant aisément 10 millions de pixels mesurant chacun 6 mm x 6 mm.
figure12
Matrice CCD. A gauche, diagramme d'énergie d'un transistor MOS (Métal Oxide Silicium). A droite, photo d'une matrice CCD
Les détecteurs infrarouges
Un deuxième type de détecteurs très importants sont les détecteurs infrarouge, notamment ceux détectant les longueurs d'onde comprises entre 3 et 5 mm, et entre 8 et 12 mm. Comme nous l'avons mentionné au début, le corps humain à 37°C rayonne énormément de lumière, sur toute une gamme de longueurs d'onde (représentée en bleu sur la Figure 13), centrée autour de 10 mm. Mais l'atmosphère ne laisse pas passer toutes les longueurs d'onde (la courbe rouge représente la transmission de l'atmosphère). Et justement entre 3 et 5 mm, et entre 8 et 12 mm, elle a une « fenêtre de transparence ». En particulier, à plus haute altitude, un avion peut voir à plusieurs centaines de kilomètres dans la bande 8-12 mm. Un autre intérêt de détecter cette gamme de longueur d'onde est qu'elle correspond à l'absorption de certains explosifs qui seraient alors détectables.
figure13
Spectre de transmission de l'atmosphère (courbe rouge), et spectre d'émission du corps humain, c'est-à-dire d'un corps noir à 37°C (courbe bleue)
Comment réaliser ces détecteurs autour de 5 et de 10 mm (c'est-à-dire ayant un gap d'énergie de 0,1 à 0,2 eV)? La Figure 6 nous indique que le couple CdTe (Tellure de Mercure) - HgTe (Tellure de Cadmium) est un bon candidat. Notons au passage que la France, grâce notamment aux laboratoires du CEA et de l'ONERA) est leader mondial dans ce domaine. Avec de tels détecteurs, il devient possible de voir des avions furtifs, indétectables par radar. Des applications existent aussi dans le domaine médical, où ces capteurs permettent de déceler certaines variations locales de température sur une simple image. Il est également possible de détecter le niveau de pétrole à l'intérieur d'un conteneur, l'inertie thermique du pétrole différant de celle de l'air.
figure14
Exemples d'images prises par des détecteurs infrarouges (source : www.x20.org)
Les cellules solaires
Dernier type de détecteur que nous examinerons : les cellules solaires, qui transforment la lumière en électricité. Le matériau roi (parce que le moins cher) dans ce domaine est le Silicium. Malheureusement son rendement quantique n'est pas bon (15%), c'est-à-dire que le Silicium absorbe très bien le rayonnement à 1 eV, tandis que le soleil émet essentiellement entre 2 à 3 eV. Des recherches sont actuellement menées afin de développer des matériaux absorbant plus efficacement dans ces gammes d'énergie. Ces recherches sont extrêmement importantes pour les nouvelles sources d'énergie.
Les émetteurs de lumière
Diodes électroluminescentes
On se rappelle qu'en se recombinant, les paires électron-trous créent un photon. Réaliser un émetteur de lumière est donc possible à partir d'un puits quantique ( Figure 15). Ce dernier confine les électrons. Prenons, comme précédemment, le cas d'un puits quantique de GaAs « sandwiché » entre deux domaines d'AlGaAs. Cette fois, nous dopons N l'AlGaAs se trouvant d'un côté du puits, et P l'AlGaAs se trouvant de l'autre côté. Si on fait passer du courant dans cette structure, les électrons de la zone dopée N vont tomber dans le puits quantique, les trous de la zone dopée P vont monter dans le puits de la zone de valence. Une fois dans le puits quantique, électrons et trous vont se recombiner et émettre un photon. Ce composant est appelé Diode Electroluminescente (LED). Ce n'est ni plus ni moins qu'un photo-détecteur dans lequel on a forcé le courant à passer.
figure15
Diagramme d'énergie d'une diode électroluminescente. Trous de la zone P et électrons de la zone N vont être piégés dans le puits quantique et se recombiner en émettant de la lumière
Les LED remplissent, elles aussi notre quotidien. Elles ont un énorme avantage sur d'autres type d'éclairage : le processus de création de photon d'une LED est extrêmement efficace. En effet, dans une LED chaque électron donne un photon. Ainsi avec un courant d'un ampère, on obtient une puissance lumineuse d'environ un Watt, alors qu'une ampoule ne donnera que 0,1W pour le même courant. L'utilisation plus répandue des LED pour l'éclairage aura un impact extrêmement important pour les économies d'énergie et l'environnement. A l'heure actuelle, elles sont utilisées dans nos télécommandes, les panneaux d'affichages, les feux de signalisation.
Depuis quelques temps les diodes rouges, orange et vertes existent. La diode bleue, plus récemment apparue a connue une histoire insolite. En 1974, des ingénieurs se penchent sur le problème de la réalisation d'une telle diode, et trouvent qu'un matériau possède le gap d'énergie adéquat (3-4 eV) : le Nitrure de Gallium (GaN). Ils vont alors chercher à le doper... pendant 10 ans... sans succès. En 1984, un grand théoricien soutient, démonstration à l'appui, qu'il n'est théoriquement pas possible de doper un tel semi-conducteur. Toutes les équipes arrêtent alors progressivement leurs recherches sur le sujet... toutes, sauf une. Celle du Dr. Nakamura (qui sans doute n'avait pas lu l'article de l'éminent théoricien) de la société Japonaise Nichia. En 1993, il trouve que le Magnésium (Mg) dope le Nitrure de Gallium ! Dix ans après, sa découverte a révolutionné le marché de l'optoélectronique. En effet, avec les autres couleurs de LED, il est à présent possible de réaliser d'immenses écrans publicitaires...
Diodes lasers
Etudions à présent l'émission stimulée. Nous avons vu que le semi-conducteur pouvait absorber un photon, qu'il pouvait également en émettre s'il possède un électron dans sa bande de conduction. En 1917, Albert Einstein s'aperçoit qu'il manque un mécanisme dans cette description de l'interaction entre la lumière et la matière. Par une démarche purement théorique, il va découvrir un nouveau phénomène : l'émission stimulée ( Figure 16).
Dans l'émission stimulée, l'électron est dans l'état excité. Arrive alors un photon, qui va stimuler la désexcitation de l'électron. Cette désexcitation va naturellement s'accompagner de l'émission d'un autre photon, dit photon stimulé. Si on se trouve dans un matériau où beaucoup d'électrons sont excités, un photon va alors pouvoir donner 2, puis 4, puis 8 ... photons ! Ce phénomène est appelé l'amplification optique.
figure16
Diagramme des mécanismes d'absorption, d'émission spontanée, et d'émission stimulée
Il est alors possible de réaliser un LASER. Pour cela, il suffit de placer deux miroirs aux extrémités de l'amplificateur optique. La lumière va être amplifiée lors d'un premier passage, une partie va être émise en dehors de la cavité, l'autre partie va être réfléchie et refaire un passage dans le milieu amplificateur. La même chose se produit sur le deuxième miroir. Si après un tour on a plus d'énergie qu'au départ, nous sommes face à un phénomène d'avalanche où le nombre de photons créés va croître très rapidement. Le système se met à osciller, c'est l'oscillation LASER.
John von Neumann, l'inventeur de l'ordinateur, prévoit que les semi-conducteurs devraient permettre de réaliser des lasers. En effet en partant d'un puits quantique et en y plaçant beaucoup d'électrons et de trous, nous allons obtenir notre milieu amplificateur. En plaçant des miroirs aux extrémités du puits quantique, on obtient alors un laser ( Figure 17). Le laser à semi-conducteur sera découvert 50 ans après, et par 3 laboratoires différents (General Electric, IBM et Bell Labs) en l'espace de 10 heures !
figure17
Schéma d'une diode laser. Le milieu à gain est constitué par la jonction P-N. A ses extrémités des miroirs forment la cavité, et laissent sortir un faisceau laser unidirectionnel
L'intérêt du laser à semi-conducteur est qu'on peut concentrer toute la puissance lumineuse sur un fin pinceau lumineux. Là encore, les applications sont nombreuses : pointeurs, lecteur de CD, télécommunications... Revenons un instant sur l'importance des matériaux émettant dans le bleu (le Nitrure de Gallium). Le laser bleu va en effet avoir des retombées importantes dans le domaine des disques lasers. Le principe du lecteur de disque est d'envoyer un laser sur la surface du disque qui réfléchit (ou non) la lumière, lumière qui est alors lue par un détecteur quantique. La surface du disque est criblée de trous stockant les bits d'information. Il se trouve que la dimension minimale d'un faisceau laser correspond à la longueur d'onde qu'il émet. Ainsi la tâche d'un laser rouge est de 0,8 mm, tandis que celle d'un faisceau bleu est de 0,4 mm. On pourra donc lire 4 fois plus d'information avec un laser bleu Les diodes bleues vont donc progressivement (et rapidement) remplacer les diodes rouges des lecteurs de disques.
La lumière d'un laser va également pouvoir être envoyée à l'intérieur d'une fibre optique, qui est une structure guidant la lumière au cSur d'un guide en verre (silice) de 4 mm de diamètre. La fibre optique permet alors de transporter énormément d'information extrêmement rapidement. A l'heure actuelle, les fibres optiques permettent d'envoyer en un dixième de seconde tout le contenu de l'Encyclopedia Universalis à 3000 km ! Cette révolution technologique, fruit de l'optoélectronique, est à la base du succès d'Internet.
Les nouvelles frontières
L'optoélectronique est un des domaines scientifiques les plus effervescents à l'heure actuelle, et de nombreuses technologies encore balbutiantes semblent très prometteuses dans un proche future : il s'agit par exemple des cristaux photoniques, des oscillateurs paramétriques optiques, de la nano-optique,... Nous nous intéresserons ici aux nouvelles longueurs d'ondes ainsi qu'au domaine des attosecondes.
Les ondes Térahertz
L'optoélectronique investit aujourd'hui de nouvelles longueurs d'onde, et ne se cantonne plus au domaine du visible et de l'infrarouge. Ces ondes appartiennent à la famille des ondes électromagnétiques ( Figure 18), qui renferme également, les ondes radio, les ondes radars et micro-ondes,... Entre les ondes radio et les ondes optiques, se trouve le domaine des ondes dites Térahertz (THz), qui jusqu'à peu ne disposaient pas de sources efficaces. L'optoélectronique développe actuellement de nouvelles sources lasers dans ce domaine, resté pendant longtemps une terra incognita.
figure18
Le spectre des ondes électromagnétiques
De telles sources permettront de développer de nouveaux systèmes de sécurité, car ils permettront notamment de voir à travers les vêtements. En effet, même au travers de matériaux opaques, les photons pénètrent, sur une longueur de quelques longueurs d'onde. Dans le cas des ondes Térahertz, la longueur d'onde est de 300 mm, le photon va pénétrer un matériau opaque sur plusieurs millimètres ! L'onde Térahertz pourra ainsi traverser les vêtements. La Figure 19 montre comment un couteau caché par un journal a pu être détecté par de l'imagerie Térahertz.
figure19
Image d'une scène dans le visible (à gauche) et dans les Térahertz (à droite). La grande longueur d'onde des ondes Térahertz permet de traverser les vêtements et les journaux.
(Jefferson Lab : www.jlab.org)
Les attosecondes
Une autre percée réalisée par l'optoélectronique concerne l'étude des temps très courts. Le domaine des attosecondes est désormais accessible à l'expérience. Une attoseconde ne représente que 0,000 000 000 000 000 001 seconde (10-18 seconde)! Il y a autant d'attosecondes dans une seconde que de secondes écoulées depuis la création de l'univers.
Pour créer des impulsions aussi courtes, il faut des ondes ayant des fréquences très élevées. L'impulsion la plus courte qu'on puisse faire avec une onde consistera à ne prendre qu'une seule oscillation de l'onde. L'optoélectronique nous propose des techniques qui permettent de ne découper qu'une seule oscillation du champ électromagnétique. Si on prend de la lumière visible (de fréquence 1015 Hz), on est capable de découper une tranche de 10-15 seconde (une femtoseconde). On peut aujourd'hui aller encore plus loin, et atteindre le domaine des attosecondes.
La Figure 20 montre en fonction du temps les plus petites durées atteignables par l'électronique et par l'optoélectronique. L'électronique, ayant des fréquences limitées à quelques gigahertz (GHz) est actuellement limitée, tandis que l'optique, avec des photons aux fréquences bien plus élevées permet de sonder des durées bien plus faibles.
figure20
Evolution des plus petites durées mesurables par l'électronique et l'optoélectronique dans les 40 dernières années
L'électron met environ 150 attosecondes pour « faire le tour » de l'atome d'Hydrogène. Nous devrions donc avoir d'ici peu les techniques permettant d'observer ce mouvement ! On retrouve le cercle vertueux que nous avions évoqué au début : la science fondamentale a fourni des technologies, et ces technologies, en retour, fournissent aux sciences fondamentales des possibilités d'observer de nouveaux domaines du savoir et de la connaissance de l'univers.
VIDEO CANAL U LIEN |
|
|
|
|
|
|
SUIVRE LES RÉACTIONS ENTRE LES ATOMES EN LES PHOTOGRAPHIANT AVEC DES LASERS |
|
|
|
|
|
SUIVRE LES RÉACTIONS ENTRE LES ATOMES EN LES PHOTOGRAPHIANT AVEC DES LASERS
"Les progrès de l'optique ont conduit à des avancées significatives dans la connaissance du monde du vivant. Le développement des lasers impulsionnels n'a pas échappé à cette règle. Il a permis de passer de l'ère du biologiste-observateur à l'ère du biologiste-acteur en lui permettant à la fois de synchroniser des réactions biochimiques et de les observer en temps réel, y compris in situ. Ce progrès indéniable a néanmoins eu un coût. En effet, à cette occasion le biologiste est (presque) devenu aveugle, son spectre d'intervention et d'analyse étant brutalement réduit à celui autorisé par la technologie des lasers, c'est à dire à quelques longueurs d'onde bien spécifiques. Depuis peu, nous assistons à la fin de cette époque obscure. Le laser femtoseconde est devenu "" accordable "" des RX à l'infrarouge lointain. Il est aussi devenu exportable des laboratoires spécialisés en physique et technologie des lasers. Dans le même temps, la maîtrise des outils de biologie moléculaire et l'explosion des biotechnologies qui en a résulté, ont autorisé une modification à volonté des propriétés - y compris optiques - du milieu vivant. Une imagerie et une spectroscopie fonctionnelles cellulaire et moléculaire sont ainsi en train de se mettre en place. L'exposé présentera à travers quelques exemples, la nature des enjeux scientifiques et industriels associés à l'approche "" perturbative "" du fonctionnement des structures moléculaires et en particulier dans le domaine de la biologie. "
Texte de la 211e conférence de l’Université de tous les savoirs donnée le 29 juillet 2000.
La vie des molécules biologiques en temps réel : Laser et dynamique des protéines
par Jean-Louis Martin
En aval des recherches autour des génomes, alors que le catalogue des possibles géniques et protéiques est en voie d’achèvement, nous sommes entrés dans l’ère fonctionnelle qui doit nous conduire à comprendre comment toutes les molécules répertoriées interviennent pour « faire la vie ». Le profit qui sera fait de cette masse d’informations, dépend de notre capacité à intégrer ces données moléculaires dans des schémas fonctionnels sous-tendant la constitution et l’activité des cellules voire des organes et des organismes.
Cette intégration va dépendre de domaines de recherche très variés, différents de ceux qui traditionnellement ont fait progresser la biologie des systèmes intégrés.
Au niveau cellulaire, l’approche fonctionnelle est déjà très avancée, en partie parce qu’elle s’appuie sur des compétences, des technologies et des concepts, largement communs à ceux développés par la génétique et la biologie moléculaire. Elle est toutefois, à ce jour, encore loin d’aboutir à une mise en cohérence du rôle fonctionnel des différents acteurs dont elle identifie le rôle au sein de la cellule : récepteurs, canaux ioniques, messagers, second messagers… Les progrès dans ce domaine vont être intimement liés à notre capacité à développer des outils autorisant à la fois un suivi in situ des différents acteurs, et une manipulation à l’échelle de la molécule.
Les développements technologiques spectaculaires dans le domaine des lasers impulsionnels a déjà permis le développement d’une nouvelle microscopie en trois dimensions : la microscopie confocale non linéaire. Associée à la construction de protéines chimères fluorescentes, cet outil a déjà permis de progresser significativement dans la localisation d’une cible protéique ou dans l’identification de voies de trafic intracellulaire.
Cependant, le décryptage in situ et in vivo du rôle fonctionnel des différents acteurs, en particulier protéique, ou plus encore, la compréhension des mécanismes sous-jacents, constituent des défis que peu d’équipes dans le monde ont relevés à ce jour. Il s’agit ici d’associer des techniques permettant de donner un sens à une cascade d’évènements qui s’échelonnent sur des échelles de temps allant de la centaine de femtoseconde1 à plusieurs milliers de secondes.
Le fonctionnement des protéines en temps réel
Le fonctionnement des macromolécules biologiques – protéines, acides nucléiques – est intimement lié à leur capacité à modifier leurs configurations spatiales lors de leur interaction avec des entités spécifiques de l’environnement, y compris avec d’autres macromolécules. Le passage d’une configuration à une autre requiert en général de faibles variations d’énergie, ce qui autorise une grande sensibilité aux variations des paramètres de l’environnement, associée à une dynamique interne des macromolécules biologiques s’exprimant sur un vaste domaine temporel.
Dans une première approche, on peut considérer qu’une vitesse de réaction biologique est la résultante du « produit » de deux termes: une dynamique intrinsèque des atomes et une probabilité de transition électronique. C’est en général ce dernier facteur de probabilité qui limite la vitesse d’une réaction. Une réaction biochimique est généralement lente non pas comme conséquence d’évènements intrinsèquement lents, mais comme le résultat d’une faible probabilité avec laquelle certains de ces évènements moléculaires peuvent se produire.
Plus précisément, une réaction biologique qui implique, par exemple, une rupture ou une formation de liaison, est tributaire de deux classes d’évènement : d’une part un déplacement relatif des noyaux des atomes et d’autre part une redistribution d’électrons parmi différentes orbitales. Ces deux catégories d’évènements s’expriment sur des échelles de temps qui leur sont propres et qui dépendent de la structure électronique et des masses atomiques des éléments constituant la molécule. Ainsi la dynamique des atomes autour de leur position d’équilibre est, en première approximation, celle d’oscillateurs harmoniques faits de masses ponctuelles couplées par des forces de rappels. Dans le cas des macromolécules biologiques, les milliers d’atomes que comporte le système évoluent sur une hyper-surface d’énergie dont la dimension est déterminée par le nombre de degrés de liberté de l’ensemble du complexe.
Le « travail » que doit effectuer une protéine est de nature très variée : catalyse dans le cas des enzymes, transduction de signal dans le cas de récepteurs, transfert de charges de site à site, transport de substances … mais il existe une caractéristique commune dans le fonctionnement de ces protéines : la sélection de chemins réactionnels spécifiques au sein de cette surface de potentiel. À l’évidence le système biologique n’explore pas l’ensemble de l’espace conformationnel : le coût entropique serait fatal à la réaction… et à l’organisme qui l’héberge.
L’identification de ce chemin réactionnel au sein de l’édifice constitue l’objectif essentiel des expériences de femto-biologie.
L’approche expérimentale : produire un séisme moléculaire et le suivre par stroboscopie laser femtoseconde
Dans une protéine, qui comporte des milliers d’atomes, l’identification des mouvements participant à la réaction moléculaire n’est pas chose aisée.
Comment réussir à caractériser la dynamique conduisant à une conformation intermédiaire qui est elle-même à la fois très fugace et peu probable ?
La cinétique de ces mouvements est directement déterminée par les modes de vibration de la protéine. On peut donc s’attendre à des mouvements dans les domaines femtoseconde et picoseconde2. Pour espérer avoir quelques succès dans cette investigation, il est par ailleurs impératif d’utiliser un système moléculaire accessible à la fois à l’expérimentation et à la simulation, la signature spectrale de la dynamique des protéines n’apportant que des informations indirectes. De plus, la réaction étudiée doit pouvoir être induite de manière « synchrone » pour un ensemble de molécules. Il est donc nécessaire de perturber de manière physiologique un ensemble moléculaire dans une échelle de temps plus courte que celle des mouvements internes les plus rapides, donc avec une impulsion femtoseconde.
Cette approche « percussionnelle » est commune à la plupart des domaines de recherche utilisant des impulsions femtosecondes. La biologie ne se distingue sur ce point, que dans l’adaptation de la perturbation optique pour en faire une perturbation physiologique. Le problème est naturellement résolu dans le cas des photorécepteurs pour lesquels le photon est « l’entrée » naturelle du système. Ceci explique les nombreux travaux en photosynthèse : transfert d’électron dans les centres réactionnels bactériens, transfert d’énergie au sein d’antennes collectrices de lumière dans les bactéries, mais aussi les études transferts de charges au sein d’enzyme de réparation de l’ADN ou responsable de la synchronisation des rythmes biologiques avec la lumière solaire, ainsi que les travaux sur les premières étapes de la vision dans la rhodopsine.
Il existe par ailleurs des situations favorables où la protéine comporte un cofacteur optiquement actif qui peut servir de déclencheur interne d’une réaction: c’est la cas des hémoprotéines comme l’hémoglobine que l’on trouve dans les globules rouges ou les enzymes impliquées dans la respiration des cellules comme la cytochrome oxydase. Dans ces hémoprotéines il est possible de rompre la liaison du ligand (oxygène, NO ou CO) avec son site d’ancrage dans la moléculen par une impulsion lumineuse femtoseconde.On se rapproche ici des conditions physiologiques, la transition optique permettant de placer le site actif de l’hémoprotéine dans un état instable entrainant la rupture de la liaison site actif-ligand en moins de 50 femtosecondes. Cette méthode aboutit à la synchronisation de l’ensemble des réactions d’un grand nombre de molécules. Il est alors possible de suivre leur comportement pendant la réaction et d’identifier les changements de conformation lors du passage des cols énergétiques. On peut faire une analogie sportive : en suivant l’évolution de la vitesse d’un « peloton » de coureurs cyclistes lors d’une étape du tour de France, on peut retracer le profil de cols et de vallées de l’étape, à condition que les coureurs partent au même instant. Pour un « peloton » de molécules, c’est le Laser femtoseconde qui joue le rôle du « starter » de l’étape.
Le paysage moléculaire dans les premiers instants d’une réaction : la propagation d’un séisme moléculaire
Dans les premiers instants qui suivent la perturbation (dissociation de l’oxygène de l’hème, par exemple), les premiers évènements moléculaires resteront localisés à l’environnement proche du site actif. À une discrimination temporelle dans le domaine femtoseconde, correspond donc une discrimination spatiale au sein de la molécule. Il devient ainsi possible de suivre la propagation du changement de conformation au sein de la molécule. Pour donner un ordre de grandeur, celui-ci s’effectue en effet en première approximation à la vitesse d’une onde acoustique ( environ 1200m/s) qui, traduite à l’échelle de la molécule, est 1200x10-12 soit 12 Å par picoseconde. En 100 fs la perturbation initiale est donc essentiellement localisée au site actif. Nous sommes au tout début du séisme moléculaire. En augmentant progressivement le retard de l’impulsion analyse par rapport à l’impulsion dissociation, il est possible de visualiser les chemins de changement conformationnel de la protéine et d’identifier les mouvements associés au fonctionnement de la macromolécule.
Ce simple calcul montre que la spectroscopie femtoseconde se distingue de manière fondamentale des techniques à résolution temporelle plus faible: il ne s’agit plus d’ obtenir des constantes de réaction avec une meilleur précision, mais l’intérêt majeure des « outils femtosecondes » provient du fait que pour la première fois il est possible de décomposer les évènements à l’origine de ces réactions ou induits par la réaction.
Cette discrimination spatiale associée à une résolution temporelle femtoseconde a un autre intérêt qui est de « simplifier » un système complexe sans avoir à utiliser une approche réductionniste (par coupure chimique) qui peut conduire le biophysicien moléculaire à étudier un sous-ensemble d’un complexe moléculaire dont les propriétés n’auront que peu de choses à voir avec la fonction biologique de l’ensemble.
La compréhension d’un automate moléculaire
Dès le début des années 80, l’approche percussionnelle dans le régime femtoseconde a été développée dans le domaine de la dynamique fonctionnelle des hémoprotéines et en particulier pour l’étude de l’hémoglobine. Cette protéine qui comporte quatre sites de fixation de l’oxygène, les hèmes, est capable d’auto-réguler sa réactivité à l’oxygène : c’est une régulation dite « allostérique ». La régulation allostérique de l’hémoglobine se traduit par le fait que la dissociation ou la liaison d’une molécule d’oxygène entraine une modification d’un facteur 300 de l’affinité des autres hèmes pour l’oxygène. La structure de l’hémoglobine est connue à une résolution atomique à la fois dans l’état ligandé (ou oxyhémoglobine) et dans l’état déligandé (désoxyhémoglobine). De ces travaux on sait que l’hémoglobine possède deux structures stables qui lui confèrent soit une haute affinité (état R) soit une basse affinité (état T) pour l’oxygène. Il s’agissait de déterminer le mécanisme, qui partant de la rupture d’une simple liaison chimique entre oxygène et fer induit un changement conformationel de l’ensemble du tétramère conduisant à distance à une modulation importante de l’affinité des autres sites de liaison.
Le débat de l’époque concernant la transition allostérique dans l’hémoglobine n’avait pas encore décidé du choix entre cause et conséquence au sein de l’édifice moléculaire. Nous connaissions les deux structures à l’équilibre avec une résolution atomique, grâce aux travaux de Max Perutz. Il était connu, même si cela n’était pas encore unanimement admis, que la dissociation de l’oxygène de l’hème entrainait « à terme » un changement conformationnel de ce dernier par déplacement de l’atome de fer en dehors du plan des pyrroles. Deux modèles s’opposaient: ce déplacement était-il la cause ou la conséquence du changement conformationnel impliquant la structure tertiaire et quaternaire de l’hémoglobine ? Dans la première hypothèse, cet évènement était crucial puisque le déclencheur de la communication hème-hème au sein de l’hémoglobine, c’est à dire le processus qui traduisait une perturbation très locale ( rupture d’une liaison chimique en un « basculement » de la structure globale vers un autre état). En discriminant temporellement les évènements consécutifs à la rupture de la liaison ligand-fer, il a été montré que le premier évènement est le déplacement du fer en dehors du plan de l’hème en 300 femtosecondes. Cet événement ultra-rapide constitue une étape cruciale dans la réaction de l’hémoglobine avec l’oxygène. Il contribue à donner à l’hémoglobine les propriétés d’un transporteur d’oxygène en autorisant une communication d’un site de fixation de l’oxygène à un autre. Un événement excessivement fugace et à l’échelle nanoscopique a donc retentissement au niveau des grandes régulations physiologiques : ici l’oxygénation des tissus.
À ce jour, l’essentiel du scénario consécutif à cet événement initial, qui conduit à la communication hème-hème, reste à découvrir. Pour cela il est nécessaire de faire appel à des outils permettant de suivre la propagation de ce « séisme initial » au sein de l’édifice et d’identifier ainsi les mouvements atomiques contribuant au chemin réactionnel. Des nouveaux outils restent à découvrir, certains sont en cours de développement : diffraction RX femtoseconde, spectroscopie infra-rouge dans le domaine THz sont probablement les outils adaptés.
La catalyse enzymatique : la caractérisation des états de transition
Dans son commentaire sur le prix Nobel en « femtochimie », l’éditeur de Nature3 écrit dans le dernier paragraphe : « It seems inevitable that ultrafast change in biological systems will receivre increasing attention ».
Sur quoi se fonde une telle certitude ?
Pour une part, sur une réflexion qui date d’un demi-siècle : celle de Linus Pauling qui était essentiellement de nature théorique. Pauling a proposé que le rôle des enzymes est d’augmenter la probabilité d’obtenir un état conformationnel à haute énergie très fugace ou, en d’autres termes, de stabiliser l’état de transition c’est-à-dire l’état conformationnel conduisant à la catalyse. En d’autres termes, il s’agit d’optimiser l’allure du « peloton » au sommet du Tourmalet. Dans les enzymes comme pour les coureurs, c’est à cet endroit que l’avenir de la réaction se joue, et c’est ici que les enzymes interviennent !
Le préalable à la compréhension du fonctionnement des enzymes est donc la caractérisation des états de transition. Une démonstration expérimentale indirecte a été la production d’anticorps catalytiques- ou abzymes- par Lerner et coll. dans le début des années 80. En effet, suivant le raisonnement de Pauling, les anti-corps « reconnaissent » leur cible épitopique dans leur état fondamental ( c’est à dire au minimum de la surface de potentiel, dans la vallée énergétique) alors que les enzymes reconnaissent leur cible, le substrat, dans son état de transition, au col énergétique. Les anticorps deviendont catalytiques si, produits en réponse à la présence d’une molécule mimant l’état de transition d’un substrat, ils sont mis en présence de ce dernier... : ça marche... plus ou moins bien, mais ceci est une autre histoire.
La caractérisation de cet état de transition est donc un préalable à la compréhension des mécanismes de catalyse mais aussi à la conception d’effecteurs modifiant la réactivité. Dans une protéine, qui comporte des milliers d’atomes, l’identification des mouvements participant à la réaction moléculaire n’est pas chose aisée, l’interprétation des spectres ne pouvant plus être directe, comme dans le cas des molécules diatomiques. La cinétique de ces mouvements est directement déterminée par les modes de vibration de la protéine. On peut donc, ici aussi, s’attendre à des mouvements dans le domaine femtoseconde.
Il existe une classe d’enzymes pour laquelle la structure de l’état de transition est connue grace à des approches théoriques : ce sont les protéases dont on sait qu’elles favorisent la configuration tétrahédrique du carbone de la liaison peptidique.Cette connaissance de l’état de transition a autorisé une approche rationnelle dans la conception de molécules « candidat-médicament »: les inhibiteurs de protéase. Il n’est donc pas surprenant qu’à ce jour, les seuls médicaments sur le marché -et non des moindres- issus d’une démarche scientifique véritablement rationnelle soient des inhibiteurs de protéases ou de peptidases : inhibiteurs de l’enzyme de conversion (IEC), inhibiteurs de protéase du virus HIV, base de « la tri-thérapie ».
En donnant l’espoir de photographier les états de transition, la femto-biologie ouvre la perspective d’une démarche rationnelle dans la conception d’inhibiteurs spécifiques. Avant qu’une telle possibilité ne soit offerte, il reste néanmoins à surmonter de sérieuses difficultés: le développement d’une méthode plus directe de visulisation des conformations, en particulier par diffraction RX femtoseconde, mais aussi la mise au point de méthodes de synchronisation à l’échelle femtoseconde de réactions enzymatiques au sein d’un cristal.
Filmer les molécules à l’échelle femtoseconde a permis de mettre en évidence un comportement inattendu d’enzymes de la respiration : l’utilisation de mouvements de balancier des atomes au profit d’une grande efficacité de réaction
La vie de tous les organismes aérobies – dont nous sommes – dépendent d’une classe d’enzyme : les oxydases et plus particulièrement pour les eucaryotes, de cytochromes oxydases. Cette enzyme est la seule capable de transférer des électrons à l’oxygène en s’auto-oxydant de manière réversible. Elle est responsable de la consommation de 90 % de l’oxygène de la biosphère.
Un dysfonctionnement de cette enzyme a un effet délétère sur la cellule, en particulier par production du très toxique radical hydroxyle °OH. Au delà d’un certain seuil de production, les systèmes de détoxification sont débordés. Le stress oxydatif qui en résulte peut se traduire par diverses pathologies. On retrouve une telle situation en période post-ischémique dans l’infarctus du myocarde, mais aussi dans des maladies neurodégénératives ou lors du vieillissement.
Cette enzyme catalyse la réduction de l’oxygène en eau à partir d’équivalents réducteur cédés par le cytochrome c soluble. Cette réduction à quatre électrons est couplée à la translocation de quatre protons à travers la membrane mitochondriale. L’oxygène et ses intermédiaires restent liés à un hème (l’hème a3) dans un site très spécifique. Ce site comprend, outre l’heme a3, un atome de cuivre, le CuB. Cet atome joue un rôle important dans le contrôle de l’accès des ligands vers ce site ou vers le milieu. Des ligands diatomiques (O2, NO, CO) peuvent établir des liaisons soit avec le Fer de l’hème a3, soit avec le CuB, mais le site actif parait trop encombré pour accommoder deux ligands.
Des études récentes en dynamique femtoseconde ont permis d’élucider le mécanisme de transfert de ligand (monoxyde de carbone (CO)), de l’hème a3 vers le CuB. Le CO est une molécule de transduction du signal produite en faible quantité par l’organisme, qui inhibe la cytochrome c oxidase par formation d’un complexe heme a3-CO stable. En suivant cette réaction par spectroscopie femtoseconde, il a été possible de mettre en évidence un mécanisme très efficace, et en toute sécurité, de transfert d’une molécule dangereuse pour la vie cellulaire. L’enzyme libère la molécule de CO d’un premier site en lui donnant une impulsion qui oriente sa trajectoire vers le site suivant en la protégeant de collisions avec l’environnement.
Dans ce dernier exemple l’enzyme a atteint un degré de sophistication supplémentaire : outre le franchissement du col énergétique de façon optimale, l’enzyme évite la diffusion d’une molécule dangereuse pour la survie cellulaire, tout en l’utilisant comme messager très efficace !
Vers le décloisonnement des disciplines
Le cinema moléculaire n’en est qu’à ses débuts. Il est essentiellement muet. La filmothèque est à peine embryonnaire, le nombre de plan-séquences ne permet pas encore de révéler un véritable scénario. L’essentiel est donc à venir.
Reconstruire le film des évènements conduisant à la vie cellulaire, les intégrés dans des schémas fonctionnels, va donc constituer l’objectif des prochaines décennies.
Cette intégration va dépendre de domaines de recherche très variés, différents de ceux qui traditionnellement ont fait progresser la biologie de la cellule ou des organes. Le transfert des outils de la physique, et au-delà, l’invention de nouveaux outils, y compris moléculaires, l’émergence de nouveaux concepts, va nécessiter le développement de synergies entre acteurs évoluant jusqu’ici dans des sphères disjointes : biologistes cellulaire et moléculaire, physiciens, chimistes, bioinformaticiens… Dans ce cadre il sera utile de créer les conditions permettant de rassembler en un seul site, l’ensemble des compétences.
1 Femtoseconde : le milliardième de millionième de seconde.
2 Picoseconde : millioniène de millionième de seconde = 1000 femtosecondes.
3 Vol 401,p. 626,14 octobre 1999.
VIDEO CANAL U LIEN |
|
|
|
|
|
|
PHYSIQUE ET SCIENCES DU GLOBE |
|
|
|
|
|
PHYSIQUE ET SCIENCES DU GLOBE
La Terre est une planète vivante dont l'intérieur garde de nombreux secrets. Comment voir sous la surface ? Les ondes sismiques sont les seules ondes qui se propagent jusqu'au centre de la Terre. Elles permettent de réaliser des images des structures profondes. En utilisant des méthodes qui se rapprochent de celles de l'imagerie médicale, ces images permettent d'explorer des problèmes fondamentaux de la physique de la Terre comme la convection dans le manteau, qui conditionne les grands traits de la géologie de la surface, ou l'existence du champ magnétique. Dans la plupart des cas les analyses des sismologues s'appuient sur des ondes dont ils peuvent décrire précisément le trajet et dont ils connaissent bien la source. Ces ondes ne sont qu'une faible partie du signal enregistré en continu par les stations sismologiques modernes. La physique de la diffusion multiple offre des possibilités nouvelles pour exploiter ces masses importantes de données. En particulier, le bruit, cette agitation permanente de la surface du sol qui trouve principalement son origine dans les couplages avec les océans, peut être utilisé en l'absence de séisme pour déduire les sismogrammes qui seraient observés si un séisme se produisait exactement à une des stations d'enregistrement. Une nouvelle imagerie passive émerge qui permettra d'affiner nos images de l'intérieur de la Terre et donc d'y mieux cerner les processus physiques à l'origine du monde qui nous entoure.
Transcription[1]revue et corrigée par l'auteurde la 591ème conférencede l'Universitéde tous les savoirs prononcée le 13 juillet 2005
La physique des ondes sismiques.
ParMichel Campillo
Le but de cet exposé est de mettre en évidence un certain nombre de problèmes physiques qui se posent pour la compréhension de la Terre solide. La sismologie y joue un rôle important, car les ondes sismiques, qui sont des ondes élastiques, sont les seules capables de pénétrer profondément à l'intérieur de notre planète, nous permettant de réaliser des images de couches internes, à la manière de l'imagerie médicale bien connue de tous.
Cette présentation va se faire en deux parties ; un premier temps sera consacré à la présentation de la sismologie moderne et des problèmes que rencontrent les géophysiciens, physiciens et géologues qui travaillent sur la structure interne de la Terre. Puis nous verrons des notions de physique mésoscopique et leurs utilisations en sismologie pour obtenir des nouvelles images de l'intérieur de la Terre.
Le sismogramme
Le sismogramme est à la base de tout le travail du sismologue. Depuis quelques années nous pouvons enregistrer le mouvement du sol de manière continue. On mesure le déplacement du sol en fonction du temps, qui consiste en général en une agitation permanente que l'on nomme le bruit sismique ou microsismique' jusqu'à ce qu'un séisme se produise et engendre les ondes élastiques qui nous permettront d'étudier la Terre. Ces ondes sont celles qui sont ressenties par l'homme lors des grands séismes mais que les appareils de mesure peuvent détecter avec des amplitudes qui sont bien inférieures à ce que nous sommes capables de percevoir. Les instruments modernes sont suffisamment sensibles pour que nous puissions mesurer très précisément les temps d'arrivées des ondes aux stations. C'est essentiellement cette information qui est utilisée pour faire des images de la structure interne de la Terre car, comme nous le verrons, nous connaissons aujourd'hui les trajets parcourus en profondeur par les différentes ondes qui sont observées. La première partie de l'exposé va leur être consacrée. Mais nous pouvons aussi étudier le bruit sismique, c'est-à-dire le signal qui ne peut être associé à un trajet particulier que ce soit celui qui suit un tremblement de terre (la coda) ou celui qui est du à l'agitation permanente de la surface de la Terre sous l'effet de l'atmosphère et des océans.
Mais avant de se lancer dans l'interprétation des sismogrammes, il faut rappeler ce qu'est un sismomètre. Il s'agit d'un pendule, c'est à dire une masse qui est maintenue en équilibre par un système de ressort, et lorsque le sol bouge, par le principe d'inertie on mesure le mouvement relatif de la masse et du sol. Cette idée a été mise en Suvre dès le 19ème siècle. Les capteurs actuels nous permettent de faire des mesures très précises du champ de déplacement, ceci grâce à leur petite taille en comparaison de la longueur d'onde des ondes sismiques.
Malgré leurs efforts, les sismologues ne connaissent peut-être pas très bien la Terre, ils ne connaissent pas bien non plus les tremblements de Terre d'ailleurs, mais armés de ces instruments, ils connaissent très bien les mouvements du sol et font des mesures quasi exactes du champ de déplacement. Ceci concerne des ondes avec des périodes allant de plusieurs centaines de secondes jusqu'à un centième de seconde, c'est-à-dire 100 Hz. On enregistre donc des ondes dans une gamme de fréquence très variable, mais aussi avec des amplitudes variables. En effet on mesure avec la même exactitude le bruit sismique, bien au dessous de notre seuil de perception et les mouvements du sol lors de grands tremblements de Terre destructeurs. Sur un exemple de sismogramme suivant un séisme on peut noter des arrivées individualisées d'énergie. Parlons maintenant de l'interprétation de ces sismogrammes en commençant par présenter les différents types d'ondes.
Les ondes sismiques
La première onde que l'on observe est l'onde P, c'est l'onde qui se propage le plus vite dans la Terre, à des vitesses de l'ordre de 5 ou 6 km/sec à quelques kilomètres sous nos pieds. C'est une onde de compression comparable aux ondes acoustiques que l'on produit dans l'air.
Puis arrivent les ondes S, elles sont un peu plus lentes que les ondes P, de l'ordre de 3,5 km/s à quelques kilomètres de profondeur, et ne provoquent pas une compression de la roche mais un cisaillement. Il n'existe pas d'équivalent à ces ondes dans les fluides.
Tous les séismes génèrent ces deux grands types d'onde, qui vont se propager dans la Terre profonde et qu'on appelle donc « ondes de volume ». Pour les décrire facilement, on peut les associer à des rayons lumineux se propageant à l'intérieur de la Terre. On peut alors leur appliquer la loi de Descartes et les principes de la réflexion et la réfraction de la lumière.
Mais toutes nos observations sont réalisées à la surface de la Terre ; et à la surface d'un corps élastique il existe un troisième type d'ondes. C'est l'onde de Rayleigh, qui est spécifique des corps élastiques et dont l'existence est confinée près de la surface. Ces ondes dites de surface, produisent des mouvements qui ressemblent à ceux engendrés par la houle sur la mer, c'est-à-dire qu'un point de la surface de Terre décrit une ellipse lors du passage de l'onde. Ces ondes de surface se propagent à des vitesses plus faibles et forment l'arrivée tardive de grande amplitude sur notre exemple de sismogramme. Les sismogrammes nous permettent donc d'observer des ondes de volume qui pénètrent l'intérieur de la Terre et dont on peut suivre les trajets comme des rayons lumineux et des ondes de surface qui elles, sont confinées près de la surface. Mais il faut être prudent lorsque l'on parle d'ondes superficielles car avec des périodes de 300 secondes, elles pénètrent quand même jusqu'à plusieurs centaines de km de profondeur. Cependant elles se propagent toujours parallèlement à la surface de la Terre et on les différencie bien de la catégorie des ondes de volume. Les ondes de surface jouent un rôle très important en sismologie car une part importante de l'énergie produite par les séismes superficiels est transmise sous cette forme.
Modèle global
Le fait que l'on dispose aujourd'hui d'une très grande collection de sismogrammes fait suite à un effort international considérable sur un réseau de stations sismiques qui couvre la quasi-totalité de la planète. Ce qui est le plus important, c'est que depuis à peu près un siècle, l'échange de données est organisé au niveau international. Les chercheurs de différents pays se sont transmis leurs informations, et à partir de ces données cumulées globales on a pu dévoiler la structure interne de la Terre. Par exemple la France y contribue par ses stations locales et par le réseau Geoscope qui s'étend à l'échelle globale.
Dès la mise en place des premiers réseaux à la fin du 19ème siècle, les chercheurs ont commencé à accumuler des observations de temps d'arrivées qu'ils ont reportés sur des diagrammes en fonction de la distance épicentrale. L'accumulation de ces observations individuelles a permis de décrire des courbes continues qui seront associées à des trajets spécifiques. La première grande découverte a été faite dès 1906 par un sismologue britannique, Oldham, qui à partir de ces observations a découvert l'existence d'une zone d'ombre dont il a déduit la présence d'un corps interne dont les propriétés provoquent une forte réfraction des ondes sismiques. Oldham a ainsi démontré l'existence d'un noyau plus lent, et il a pu calculer son rayon. C'était le premier élément qui allait permettre de construire progressivement un modèle complet de Terre. Aujourd'hui bien sûr le modèle s'est raffiné et de nombreux trajets ont été identifiés et nommés suivant une codification rationnelle. On dispose d'un modèle global moyen pour lequel on peut évaluer les temps de parcours de nombreuses arrivées correspondant à des trajets bien identifiés. Les différentes couches constituant la Terre sont reconnues et leurs propriétés moyennes précisément évaluées. En termes de temps de parcours des ondes, les différences entre ce modèle et la structure réelle sont très faibles. Ce modèle moyen est très important car il fait le lien entre les sismogrammes et les structures internes de la Terre.
Ce diagramme a été construit à partir des ondes que l'on peut identifier directement, mais quand se produit un séisme extrêmement fort, comme le séisme de Sumatra récemment, la Terre vibre globalement. Bien sur, les ondes de volume vont se propager dans la Terre, les ondes P par exemple mettent 20 minutes pour aller d'un point à son antipode. Toutes les ondes dont nous avons parlé vont interférer entre elles et donner lieu à une résonance globale. La Terre se met à vibrer comme une cloche. On appelle ces vibrations les modes propres de la Terre. Dans les signaux produits, on peut identifier tout un ensemble de fréquences discrètes, chacune correspondant à un mode propre de vibrations qui a pu être identifié. D'une manière similaire à ce que nous avons vu pour les ondes de volume, ces collections d'observations contribuent à construire un modèle global. Par exemple, il existe des modes que l'on appelle toroïdaux; ce sont des modes de torsion. En effet, si on imagine que l'on fait tourner l'hémisphère sud dans un sens et l'hémisphère nord dans l'autre sens, puis on lâche, la Terre va se mettre à osciller de part et d'autre de l'équateur. Ce mode possède une fréquence particulière, et donc lorsque l'on voit un pic d'amplitude à cette fréquence on identifie aussitôt le mode de torsion.
Cependant, on sait depuis longtemps que les pics de fréquences de résonance sont constitués d'une série de contributions de fréquences très proches. Mais ces multiplets sont très difficiles à analyser avec des données sismologiques classiques. Cependant, les sismologues ont de nouveaux appareils de mesure à leur disposition, et notamment les gravimètres absolus. C'est un appareil complexe qui permet de faire des mesures d'accélération du sol d'une précision de 10-12 fois l'accélération de pesanteur. Après le séisme de Sumatra, le premier séisme géant' depuis la mise en place de ses appareils, on dispose de données d'une précision nouvelle pour étudier la structure de la Terre, mais aussi sur la source du séisme.
Donc lorsque l'on regroupe toutes ces données, que ce soit les courbes distance épicentrale/temps de trajet, les diagrammes amplitude/fréquence (résonance simple et multiplets), on obtient un modèle de Terre globale sur les grandes lignes duquel tous les chercheurs sont d'accord, bien sûr dans le détail il y a des différences d'appréciation.
A la surface de la Terre, on a une croûte soit océanique, quelques km d'épaisseur, soit continentale, d'une quarantaine de km d'épaisseur en moyenne. Puis en dessous on a une grande zone que l'on appelle le manteau, cette zone se divise en deux : le manteau supérieur et le manteau inférieur. Le manteau est globalement composé d'un matériau solide possédant à peu près la même composition partout, la subdivision du manteau est liée à un changement de phase des cristaux et notamment de l'olivine. Près de la surface les pressions ne sont pas très fortes puis lorsque l'on va en profondeur la pression augmente, les réseaux cristallins se réorganisent, provoquant un changement de vitesse de propagation des ondes. C'est l'étude de la réfraction/réflexion des ondes qui nous a permis d'identifier cette transition entre manteau inférieur et manteau supérieur. En allant en profondeur on traverse donc une couche solide, (croûte + manteau), puis on va rencontrer l'interface manteau/noyau (imagée par Oldham en 1906). L'étude des ondes sismiques, une fois de plus, nous a permis de déterminer l'état du noyau externe. Les ondes S ne se propageant pas dans le noyau externe, on en a déduit que ce dernier était composé de métal liquide. Puis vers la fin des années 1930, une sismologue danoise Mme Lehman, a découvert le noyau interne, que l'on nomme aussi la « graine ». La graine est la partie solide du noyau, qui s'est formée par cristallisation du noyau externe lors du refroidissement de la Terre.
Ce modèle simple de Terre pose de nombreux problèmes physiques :
- Une des données observables sur Terre est le champ magnétique, et ce champ magnétique est un des mystères de la géophysique. On sait aujourd'hui qu'il trouve sa source dans le noyau liquide, mais on ne sait pas le reproduire dans un laboratoire, que ce soit par des méthodes analogiques (crée un champ magnétique dans une sphère et qui reste stable) ou par des méthodes numériques. Ce champ magnétique possède un certain nombre de particularités, par exemple, il confirme la présence d'un noyau liquide en mouvement puis on sait qu'au cours des temps géologiques le champ magnétique a déjà changé de sens plusieurs fois. D'ailleurs ce sont ces changements de polarité du champ magnétique qui ont été les premiers arguments de la tectonique des plaques, en effet au niveau des rides océaniques lorsque les roches se cristallisent elles enregistrent le champ magnétique. Or les paléomagnéticiens ont vu une alternance de polarités, ce qui confirmait l'idée de la création progressive des plaques sur les rides, enregistrant les alternances de polarité, puis l'expansion des fonds océaniques.
- Une autre découverte faite sur le noyau est qu'il change aussi très vite. En effet on possède des séries de données depuis le 17ème siècle, et on a remarqué qu'en l'espace de quelques siècles la structure du champ magnétique terrestre a beaucoup changé. Pour la géophysique interne c'est une découverte assez exceptionnelle, en effet les échelles de temps en géologie sont souvent très grandes, bien au-delà de la durée de nos vies ; alors qu'à l'intérieur du noyau il y a des mouvements de fluide avec une vitesse de l'ordre du km/an.
Le but de la sismologie est d'arriver un jour à mesurer ces mouvements en cours dans le noyau, ce n'est pas encore le cas pour l'instant. Mais des résultats ont été obtenus, en effet on a remarqué que les ondes qui se sont propagées dans la graine en passant par l'axe de rotation, qui est proche de l'axe du champ magnétique, n'ont pas la même vitesse que les ondes qui ont traversées la graine par le plan équatorial, il semble qu'il y ait là une signature sismologique du champ magnétique.
- Les mystères ne concernent pas uniquement le noyau. Le manteau est un solide, mais un solide qui convecte, c'est-à-dire que sur des temps très longs, le million d'années, le manteau se comporte comme un fluide très visqueux avec des vitesses qui cette fois sont de l'ordre du cm/an. L'évidence de cette convection en surface est la tectonique des plaques, en effet les matériaux froids (les plaques océaniques anciennes) ont tendance à plonger dans le manteau, tirant sur le reste de la plaque, il se forme alors des rides océaniques où le matériau chaud remonte des profondeurs et vient cristalliser en surface.
L'apport de la sismologie provient cette fois de l'image tomographique que l'on peut obtenir du manteau, en effet les ondes ne se propagent pas de la même façon dans un matériau froid que dans un matériel chaud. Lorsque les ondes traversent un matériel chaud leur vitesse diminue, et inversement. En surface on s'aperçoit que les océans jeunes sont plutôt chauds, alors que les plaques continentales anciennes sont plus froides. Mais le plus intéressant vient lorsque l'on regarde plus en profondeur, le manteau devient homogène : le contraste de vitesse diminue. Les images obtenues ne correspondent pas aux modèles anciens de la tectonique des plaques dans lesquels on avait de grandes cellules de convection qui prenaient tout le manteau, qui étaient régulièrement espacées. On a donc du développer de nouveaux modèles numériques pour prendre en compte ces nouvelles observations, ces modèles sont beaucoup plus compliqués avec des plaques qui plongent et des panaches de manteau chaud qui remontent dans une répartition complexe. Les géologues ont découvert des traces en surface de ces panaches, ils seraient associés aux zones dites de point chaud. Un exemple est le panache qui a créé la région volcanique du Décan en Inde. Les plaques se sont déplacées et le panache toujours actif a créé les volcans des Maldives, et aujourd'hui ce même panache se situerait sous l'île de la réunion.
La sismologie peut nous aider à comprendre comment se font les échanges thermiques à l'intérieur de la Terre, pour cela il nous faudrait arriver à imager ces panaches. On commence à le faire, par exemple sous l'Islande. L'origine du point chaud se trouve à plusieurs centaines de km de profondeur, ce qui est cohérent avec l'existence d'un panache mantellique. Un autre exemple est la zone des Afars où une anomalie thermique profonde a pu être décelée.
Alors pourquoi a-t-on du mal à imager l'intérieur de la Terre ?
Cela vient du fait que pour faire cette imagerie on utilise les ondes produites lors des grands tremblements de Terre et, heureusement pour l'homme, ces phénomènes sont rares, et on dispose donc d'assez peu de données pour imager les couches profondes.
De plus, l'utilisation des tremblements de Terre pose un autre problème, si on étudie les séismes de magnitude supérieure à 5 de ces vingt dernières années, on s'aperçoit qu'ils se situent tous aux mêmes endroits : au niveau des grandes frontières de plaques. La couverture spatiale de la planète est imparfaite, il y a des endroits sur Terre où malgré les efforts d'instrumentalisation, on n'enregistra jamais de gros séismes.
Ensuite, on est aussi limité par des soucis techniques, en effet il est facile d'installer des stations sur terre mais installer des stations dans les grands fonds océaniques est extrêmement difficile et coûteux. Donc pour le moment, hormis sur les îles il y a très peu de sites de mesures, donc c'est un des enjeux de la sismologie instrumentale dans le futur.
Les grands séismes nous ont permis, grâce à l'étude des ondes de volume et de surface, d'obtenir un modèle global de la Terre ; mais on enregistre d'autres ondes et notamment du bruit sismique. Après un grand séisme, on enregistre un long signal tardif dans lequel on ne peut identifier d'arrivées correspondant à des trajets individuels. C'est ce que l'on appelle la « coda ». On enregistre aussi une agitation permanente de la surface, dont l'origine n'est pas totalement connue et que l'on nomme le bruit sismique. Quel est l'intérêt d'étudier ces ondes ? Tout simplement, pour l'instant on a représenté la Terre de manière globale comme un milieu simple fait de couches homogènes sur lequel les chercheurs pouvaient se mettre d'accord ; mais en réalité la Terre est bien plus complexe que cela.
En effet, il suffit de regarder le paysage, les cartes de géologie pour s'apercevoir que la Terre est un objet complexe à différentes échelles avec des failles, des blocs de matière différenciés, etc. Il nous faut donc trouver une autre approche que la théorie des rais utilisée précédemment. On va donc se tourner vers la physique. Au cours de ces dix dernières années les physiciens ont beaucoup étudié les milieux complexes, et va appliquer les mêmes approches.
Je vais illustrer mes propos par un exemple simple : un milieu contenant des impuretés, des petites zones avec des vitesses différentes. Si on place une source dans ce milieu, au début on va voir notre front d'onde qui se propage simplement, puis cette onde va se diffracter dans toutes les directions, le champ d'onde va devenir de plus en plus complexe, jusqu'à être un champ diffus. Ce phénomène de champ diffus se rencontre aussi en optique ; les jours de grand beau temps, on voit les rayons du soleil et les ombres que projettent les objets sur le sol. Les jours de brouillard, les gouttelettes d'eau vont jouer le rôle de diffracteurs, la vision devient diffuse, on ne voit plus d'où viennent les ondes lumineuses avec précision et par exemple on ne voit plus d'ombre.
Sur nos sismogrammes, on voit au début les ondes directes, puis des ondes qui se sont réfléchies sur des interfaces dont on peut encore identifier le parcours, c'est ce que l'on nomme la diffraction simple. Puis les ondes suivent des chemins de plus en plus complexes. Par exemple si un tremblement de Terre se produit à 30 km d'un récepteur, ce récepteur enregistrera des ondes qui ont parcouru 1000 km et suivant des trajets très complexes après avoir subi des diffractions multiples.
Les outils de la physique
Pour étudier ce champ diffus, on utilise des outils de la physique, qui ont été développés pour l'étude des ondes électromagnétiques, notamment le principe d'équipartition. Pour l'illustrer, considérons une onde plane qui va se propager dans une direction définie, puis lorsqu'elle va rencontrer un diffracteur, elle va engendrer des ondes planes dans plusieurs directions qui vont à leur tour se diffracter. Si on attend assez longtemps, on rentre dans un état d'équilibre où toutes les ondes planes, dans toutes les directions, vont être présentes de la même façon. Toutes les directions sont statistiquement représentées de la même façon : c'est l'équipartition. Comment peut-on être sûr que cet équilibre existe dans la Terre ? En théorie il existe un coefficient universel de proportionnalité entre l'énergie des ondes P et celles des ondes S quand l'équipartition dans un corps élastique est atteinte. En pratique, on a pu vérifier que, quelque soit le tremblement de Terre que l'on considère, quelque soit la distance épicentrale, si l'on attend assez longtemps, le rapport d'énergie se stabilise pour une valeur prédite théoriquement pour les ondes diffuses.
Je ne vais pas vous présenter les autres outils de la physique que l'on peut utiliser pour étudier ce champ diffus, mais juste vous montrer que les ondes en régime diffus gardent leurs propriétés ondulatoires, en particulier leurs phases. On rentre dans un régime dit mésoscopique, c'est-à-dire pour nous que l'on peut décrire l'évolution de l'énergie par un processus de diffusion macroscopique alors que simultanément des propriétés microscopiques des ondes élémentaires sont observables. Un exemple de propriété microscopique est la propriété de réciprocité que vérifient les équations d'onde, c'est-à-dire que si on intervertit la position du récepteur et de la source, on obtient le même signal, en faisant attention à la polarisation. Quel est l'intérêt de cette propriété pour l'étude du champ diffus ? Un signal diffus est composé dun grand nombre d'ondes avec des trajets compliqués. Si on considère une de ces ondes en particulier, le principe de réciprocité doit s'appliquer et indique que le trajet entre le premier et dernier diffracteur parcouru en sens inverse doit exister.
Cependant quand la source et le récepteur sont en des points éloignés les 2 ondes n'arrivent pas en même temps et elles contribuent au champ diffus de manière dite incohérente. Sauf dans un cas : lorsque la source et le récepteur se situent au même point. L'onde et sa réciproque vont alors emprunter exactement le même trajet complet et donc elles vont interférer de manière constructive. Cela implique que près de la source, on, observera une zone dans laquelle l'intensité des ondes sera plus forte, et ce même bien après que les ondes directes sont propagées au loin.. Il est possible de réaliser des expériences simples pour illustrer ce principe. Je vais vous en présenter une. On a installé une ligne de capteurs au dessus d'un milieu très diffractant, ici un volcan en Auvergne actif encore il y a quelques dizaines de milliers d'années, et que on tape sur le sol avec une masse. On enregistre les ondes et on voit arriver en premier les ondes directes puis plus tard la coda.Si on trace l'énergie présente dans le début de la coda en fonction de la distance source/récepteur, on s'aperçoit que l'énergie est répartie de manière à peu près constante, ce qui est ce que l'on attend intuitivement. En revanche si on laisse encore le temps s'écouler et que l'on refait le même tracé, alors on voit apparaître un pic d'énergie d'amplitude relative 2 au niveau de la source comme le principe de la réciprocité le prédit C'est la rétrodiffusion cohérente, appelée aussi localisation faible'. Donc, dans la nature, malgré les phénomènes d'absorption et de diffraction multiples, nos enregistrements conservent des propriétés fondamentales des équations d'onde dont on va tirer profit pour utiliser les champs diffus.
La corrélation
On a vu que les champs diffus conservaient l'information transportée par les ondes qui les composent. On va donc essayer de voir comment extraire cette information. Peut-on directement retrouver les composantes de nos sismogrammes, c'est à dire des signaux correspondant à des trajets physiques dans la Terre, sans avoir à passer par la mise en Suvre de sources, ni à faire de lourds calculs numériques ? Avec d'autres mots, peut-on reconstruire des sismogrammes entre 2 points sans utiliser de source mais en tirant partie des propriétés des champs diffus enregistrés à ces 2 points ? La fonction de corrélation va permettre d'atteindre ce résultat. La valeur de la fonction de corrélation au temps t est obtenue, et consiste à décaler un signal de t puis a multiplier les 2 signaux et enfin à calculer la somme du résultat. Par exemple, si on enregistre le passage d'une onde à deux endroits différents, les deux sismogrammes seront identiques mais décalés d'un certain temps dt. Si maintenant on corrèle ces deux signaux, tant que les signaux ne seront pas en phase la multiplication de nos deux signaux vaudra zéro, puis lorsque l'on aura décalé le deuxième signal de dt, les signaux seront l'un en face de l'autre, et la fonction de corrélation sera maximale. On peut donc grâce à la fonction de corrélation connaître la différence de temps de parcours entre deux stations. Si on fait cette expérience avec une série de sources qui entourent les 2 stations on peut remarquer que la somme des corrélations correspond essentiellement aux contributions des sources qui sont alignées avec les stations et donne donc exactement le temps de parcours. C'est un exemple d'application du théorème de la phase stationnaire. On peut tester cette approche sur des données réelles. On considère plusieurs enregistrements de séismes à différentes stations et on corrèle les codas entre elles. Si on représente la fonction de corrélation on peut voir qu'elle a beaucoup de similitude avec la réponse du milieu à une source à une des stations. On peut identifier et suivre l'onde de Rayleigh jusqu'à plus de 200 km de distance. Cela signifie, que lorsque l'on étudie les ondes diffuses à des stations distantes de 200 km de l'épicentre, et même si on a l'impression qu'elles sont rendues aléatoires, en réalité elles sont corrélées, et la fonction de corrélation contient la réponse impulsionnelle du milieu.
Ce principe s'appuie sur, le théorème de la fluctuation-dissipation. Il faut supposer que la Terre est soumise à une fluctuation aléatoire la corrélation de ces fluctuations à 2 points donne la réponse déterministe entre ces 2 points. Dans notre cas, le traitement de données à réaliser est un peu compliqué : il faut sélectionner des trajets et vérifier que l'on se situe en champ diffus. Cependant, si on revient à la source de ce théorème, il a été écrit pour le bruit thermique. Or en sismologie, on a vu que les jours sans tremblement de Terre, on enregistre aussi du bruit. Cela suggère d'essayer d'utiliser cette agitation permanente de la surface de la Terre. Cette agitation est principalement contrôlée par les interactions entre les océans et la Terre solide. La première de ces interactions ce sont les vagues et la houle sur les côtes. Une autre indication de l'interaction océan/Terre solide est l'aspect variable du bruit sismique, en effet lorsqu'une dépression se forme sur l'océan et se rapproche des côtes on voit le bruit sismique augmenter énormément. Le bruit sismique a donc une origine océanique, même si on ne comprend pas très bien les mécanismes de couplage pour beaucoup de gammes de fréquence.
Prenons un exemple en Californie où l'on a sélectionné un séisme qui s'est produit juste sous une station. On a enregistré pendant un an le bruit sismique à cette station et à une deuxième qui avait enregistré le séisme. On a ainsi pu comparer la corrélation moyenne dans le bruit et le sismogramme directement produit par le séisme et constater leur similitude avec en particulier une parfaire identité des ondes de Rayleigh. C'est le fait que, considéré sur une période de temps longue, le bruit soit aléatoire qui permet de reconstruire le signal car on se rapproche alors des propriétés fondamentales requises pour appliquer notre théorème. Paradoxalement, c'est exactement ce même argument qui a poussé les sismologues a ne pas utiliser ces signaux dans le passé.
En Californie, un réseau de 70 stations sismiques de très bonne qualité distantes d'une trentaine de km a été installé. En utilisant les enregistrements continus du bruit, on a pu calculer la réponse impulsionnelle du milieu entre chaque couple de capteur. Cela a permis d'obtenir un grand nombre de trajets qui servent de base à une tomographie avec une très bonne résolution. En utilisant des ondes d'une période centrale de 7,5 sec, on peut imager la croûte superficielle de la Californie, et comparer nos résultats avec les cartes géologiques de la région. Les résultats obtenus sont en très bon accord avec nos connaissances de cette région. Plus intéressant bien sûr, on peut, en changeant de gamme de fréquence, cartographier des zones plus profondes, comme la croûte moyenne. On peut ainsi identifier les racines profondes des structures géologiques majeures et déterminer précisément leurs extensions.
Exemple sur la lune
Pour conclure, on peut se demander si le bruit que nous observons a des caractéristiques très spécifiques qui permettent à cette technique de fonctionner sur la Terre. Pour répondre à cette question on va s'intéresser à la Lune. En effet, durant la mission Appolo 17 en 1976, un petit réseau de capteurs a été installé pour étudier les couches superficielles de la Lune. Le bruit lunaire a été enregistré en continu dans de bonnes conditions. On a donc pu utiliser ce bruit lunaire pour faire des corrélations entre les différents capteurs et voir là aussi émerger la réponse élastique entre les capteurs.
On enregistre du bruit sismique sur la lune, mais quelle en est l'origine sans atmosphère ni océan ? Les très fortes variations de température entre le jour et la nuit sont à l'origine d'effets de dilatation et de fissuration très marqués qui produisent un bruit' dont la périodicité est clairement visible sur les enregistrements. On a donc une structure du bruit très différente de celle de la Terre, et malgré tout on peut utiliser les principes vus précédemment qui paraissent donc très robustes. Ceci est très intéressant pour l'exploration à long terme des planètes, car ces méthodes passives ne nécessitent pas de transporter de source.
[1] Transcription réalisée par Soline Hallier
VIDEO CANAL U LIEN |
|
|
|
|
|
|
LA PHYSIQUE QUANTIQUE (SERGE HAROCHE) |
|
|
|
|
|
LA PHYSIQUE QUANTIQUE (SERGE HAROCHE)
"La théorie quantique, centrale à notre compréhension de la nature, introduit en physique microscopique les notions essentielles de superpositions d'états et d'intrication quantique, qui nous apparaissent comme "" étranges "" et contre-intuitives. Les interférences quantiques et la non-localité - conséquences directes du principe de superposition et de l'intrication - ne sont en effet pas observables sur les objets macroscopiques de notre expérience quotidienne. Le couplage inévitable de ces objets avec leur environnement détruit très vite les relations de phase entre les états quantiques. C'est le phénomène de la décohérence qui explique pourquoi autour de nous l'étrangeté quantique est généralement voilée. Pendant longtemps, superpositions, intrication et décohérence sont restés des concepts analysés à l'aide d'" expériences de pensée " virtuelles, dont celle du chat de Schrödinger à la fois mort et vivant est la plus connue. À la fin du XXe siècle, les progrès de la technologie ont rendu réalisables des versions de laboratoire simples de ces expériences. On peut maintenant piéger et manipuler des atomes et des photons un par un et construire des systèmes de particules suspendus entre deux états quantiques distincts qui apparaissent ainsi comme des modèles réduits de chats de Schrödinger. Au delà de la curiosité scientifique et du défi que constitue l'observation de l'étrangeté quantique pour ainsi dire in vivo, ces expériences éclairent la frontière entre les mondes classique et quantique et ouvrent des perspectives fascinantes d'applications. "
Texte de la 213ème conférence de l’Université de tous les savoirs donnée le 31 juillet 2000.
Une exploration au cœur du monde quantique par Serge Haroche
Cent ans de physique quantique
L’an 2000 marque le centenaire de la physique quantique. C’est en 1900 que Planck, pour comprendre les propriétés du rayonnement des corps chauffés, émit la fameuse hypothèse que les échanges d’énergie entre la matière et la lumière devaient se faire par quanta discrets, et non de façon continue. Einstein reprit cette notion de quanta cinq ans plus tard en montrant que la lumière elle-même était constituée de grains discrets, appelés par la suite photons, et en interprétant à l’aide de cette idée révolutionnaire l’effet photoélectrique, l’émission d’électrons par les métaux éclairés. Dans les vingt ans suivants, la théorie quantique, cherchant à comprendre le comportement de la nature à l’échelle atomique, se développa à partir d’hypothèses hardies et d’intuitions géniales, notamment grâce aux travaux de Niels Bohr. En 1925 et 1926, Heisenberg, Schrödinger et Dirac arrivèrent indépendamment à la formulation complète de la théorie, qui constitue sans nul doute une des plus grandes conceptions de l’esprit humain.
La théorie quantique sert en effet de cadre essentiel à notre compréhension de la Nature, de l’infiniment petit à l’infiniment grand. La physique des particules dites élémentaires, celle des atomes et des molécules, toute la chimie sont basées sur les lois quantiques. Les ensembles d’atomes que constituent les solides obéissent également à ces lois, qui seules peuvent expliquer, par exemple, la conductivité électrique, le magnétisme ou la supraconductivité de certains métaux aux basses températures. Même la vie, dans la mesure où elle dépend de processus physico-chimiques au niveau de la molécule d’ADN, ne pourrait être comprise en dehors des lois quantiques. Enfin, la cosmologie, la science qui s’attache à l’étude de l’évolution de l’univers, donne une grande importance aux phénomènes quantiques qui se sont produits au moment du big-bang initial.
Et pourtant, malgré ses succès éclatants, la physique quantique est souvent perçue comme étrange. Elle introduit en effet dans la description du monde des notions bizarres qui défient notre intuition classique. Il s’agit du principe de superposition des états qui implique qu’un système physique peut être comme suspendu entre différentes réalités, ou encore du concept d’intrication quantique qui introduit une notion troublante de non-localité en physique. Le caractère étrange de ces concepts provient en grande part de ce que nous n’en observons jamais les effets sur les objets macroscopiques qui nous entourent et que donc notre esprit n’est pas préparé à les comprendre. Cette étrangeté troublait les fondateurs de la théorie, et son interprétation a fait l’objet entre eux de discussions très animées. Ces débats se sont en particulier déroulés au cours des fameux Congrès Solvay, à l’époque de l’élaboration de la théorie. Les participants à ces congrès prirent l’habitude d’imaginer des expériences virtuelles dans lesquelles ils isolaient et manipulaient en pensée des particules obéissant aux lois quantiques pour essayer de mettre en évidence des contradictions internes de la théorie. Tous ces débats se conclurent par la victoire de la théorie quantique, à laquelle ni Einstein ni Schrödinger qui jouaient volontiers le rôle d’avocats du diable ne purent trouver de faille. L’intérêt de la majorité des physiciens se détourna alors de ces discussions sur des expériences infaisables, et se consacra à l’exploitation de la théorie pour comprendre la nature, avec le succès évoqué plus haut.
Depuis quelques années cependant, les progrès de la technologie ont permis de réaliser des versions simples des expériences de pensée des fondateurs de la théorie. On peut maintenant piéger des photons, des atomes ou des molécules un à un, les manipuler pour ainsi
dire in vivo à l’aide de faisceaux lasers et ainsi construire des objets étranges, relativement complexes, obéissant à la logique quantique. On peut alors aborder à nouveau, mais de façon concrète, l’étude des fondements de la théorie. On peut également commencer à envisager des applications fascinantes. C’est à ces expériences de pensée devenues réelles qu’est consacré cet exposé, brève exploration au cœur du monde quantique.
Superpositions, interférences quantiques et complémentarité
Commençons par une introduction au principe de superposition. La théorie quantique nous dit que, d’une certaine manière, toute particule microscopique possède un don d’ubiquité. Alors que classiquement elle doit à tout instant être en un point bien précis, quantiquement, elle peut se trouver comme « suspendue » dans une superposition des états correspondant à toutes les positions classiques possibles. À chacune de ces positions est associé un nombre appelé fonction d’onde de la particule au point considéré. Cette fonction a été introduite par de Broglie et c’est Schrödinger qui a établi l’équation qui décrit son évolution, jetant ainsi les bases des lois de la dynamique quantique. La fonction d’onde est en général un nombre complexe. Alors qu’un nombre réel peut être symbolisé par un segment sur une droite, un complexe est représenté par un vecteur dans un plan et possède donc une amplitude (la longueur du vecteur) et une phase (sa direction). C’est le physicien Max Born qui donna l’interprétation physique de la fonction d’onde. Le carré de son amplitude représente la probabilité de trouver la particule au point correspondant lorsqu’une mesure est effectuée. Ainsi, d’après la théorie, l’ambiguïté quantique, la superposition, ne subsiste que tant que l’on ne cherche pas à savoir où est la particule. Si on cherche à déterminer sa position, on force la nature à abandonner son étrangeté quantique, la particule apparaît bien en un point et en un seul, mais cette apparition ne peut être que prévue statistiquement et non déterminée de façon absolue comme en physique classique. C’est ce qui fit dire à Einstein que selon la physique quantique « Dieu joue aux dés », ce qu’il se refusait personnellement à admettre.
La physique atomique permet d’illustrer un aspect élémentaire du principe de superposition. Les chimistes représentent l’état d’un électron dans un atome – par exemple le plus simple d’entre eux, l’hydrogène – par un volume de l’espace qu’on appelle son orbitale (Figure 1a). Ce volume est, pour l’état fondamental de l’hydrogène, une petite sphère centrée sur le noyau de l’atome d’environ un Angström (soit 10-10 m) de diamètre. Il décrit la région de l’espace dans laquelle l’électron est délocalisé. Il se trouve en fait dans une superposition de toutes les positions possibles à l’intérieur de cette sphère. Lorsque l’on porte l’électron de l’atome dans un niveau électronique excité en lui fournissant de l’énergie lumineuse, la forme de l’orbitale change, elle s’étire en général pour occuper des régions plus éloignées du noyau comme le montre la figure 1b. Les états très excités de l’atome s’appellent des états de Rydberg. Dans certains de ces états, l’électron occupe une orbitale très étendue, en forme de tore, dont le rayon peut atteindre un millier d’Angströms (figure1c). Ces états excités géants ont des propriétés très intéressantes que nous retrouverons plus loin.
Abordons maintenant une conséquence essentielle du principe de superposition, l’existence d’interférences quantiques. Considérons la fameuse expérience des fentes de Young réalisée au début du XIXe siècle avec de la lumière, c’est-à-dire des photons, et au XXe siècle avec des électrons, et plus récemment avec des atomes et des molécules : des particules traversent une paroi percée de deux fentes avant d’atteindre un écran. Les particules sont détectées en des points discrets sur l’écran, comme le montre la figure 2a. Après avoir enregistré l’arrivée d’un grand nombre de particules, on constate que les points d’impact se regroupent suivant un réseau de franges « brillantes », séparées par des franges « noires » où les particules n’arrivent jamais. L’expérience se comprend bien en termes de fonction d’onde
des particules. Cette fonction possède en effet deux composantes, correspondant au passage de la particule par chacune des deux fentes. La fonction d’onde totale est la somme des deux composantes, au sens de l’addition des nombres complexes, ou encore des vecteurs qui les représentent. En certains points de l’écran, les ondes sont en phase, leurs vecteurs de même direction, et la probabilité de trouver la particule est importante. En d’autres points, les ondes sont en opposition de phase, leurs vecteurs opposés, et la particule a une probabilité nulle d’arriver. La figure d’interférence s’évanouit si on ferme une des deux fentes, puisque alors une des composantes de la fonction d’onde disparaît.
Cette interprétation ondulatoire est étrange si l’on note que l’expérience peut être faite dans des conditions de flux très faible, où il ne se trouve à chaque instant qu’une particule dans l’appareil. On obtient alors les mêmes franges, après un temps de moyen-âge très long. On peut alors se demander comment une particule, seule dans l’interféromètre, peut « savoir » si les deux trous sont ouverts, auquel cas elle doit éviter les franges noires, ou si un trou est bouché, auquel cas elle peut arriver n’importe où ! On a là un exemple typique de logique non-classique : un phénomène (arrivée de la particule en un point) est moins probable lorsque deux possibilités sont offertes à la particule que si une seule ne l’est ! Un physicien classique posera immédiatement des questions simples : par quel trou passe réellement la particule ? Est ce une onde (auquel cas on comprend les interférences mais pas l’arrivée discrète sur l’écran) ou une particule (auquel cas on comprend les impacts discrets mais plus les interférences). La mécanique quantique répond qu’en vertu du principe de superposition, la particule passe par les deux trous à la fois, aussi longtemps qu’on ne la force pas à choisir ! Notons enfin que de telles expériences, relativement faciles à réaliser avec des particules microscopiques, deviennent de plus en plus difficiles avec des particules de taille importante. C’est encore possible avec des molécules, mais pas avec des boules de billard ou un quelconque objet macroscopique !
Les interférences quantiques jouent un rôle capital en physique microscopique et l’on peut s’en servir pour des applications importantes. Considérons par exemple un atome possédant deux niveaux d’énergie, un niveau fondamental g d’énergie Eg, et un niveau excité e, d’énergie Ee. On sait qu’en absorbant de la lumière dont la fréquence ν satisfait la relation Ee – Eg = hν (où h est la constante de Planck) l’atome peut être porté du niveau g au niveau e en absorbant un photon. Si on excite l’atome par une impulsion lumineuse et si on ajuste la durée de cette impulsion, on peut s’arranger pour que l’atome se trouve excité « à mi-
chemin » entre e et g, dans une superposition de ces deux états. Appliquons maintenant à l’atome initialement dans l’état g deux impulsions identiques, séparées dans le temps, à deux instants t1 et t2. Chacune des impulsions superpose les deux états e et g. Mesurons enfin l’énergie de l’atome et, en recommençant l’expérience un grand nombre de fois, déterminons la probabilité de le trouver finalement dans l’état e. La fonction d’onde associée à l’atome va, comme dans le cas de l’expérience de Young, présenter deux termes. L’un correspond à l’excitation de l’atome de g à e à l’instant t1, l’autre à l’instant t2. À ces termes correspondent des amplitudes complexes qui interfèrent. Leur phase relative peut être variée en balayant la fréquence ν autour de la fréquence de résonance atomique. On observe alors que la probabilité de trouver l’atome dans l’état e oscille en fonction de ν. On obtient un signal d’interférence dit « de Ramsey », du nom du physicien qui a mis au point cette méthode interférométrique. Alors que dans l’expérience de Young l’interférence provient du fait que l’on ne sait pas par quelle fente la particule est passée, ici elle résulte de l’ambiguïté sur l’instant de l’excitation de l’atome. C’est en détectant de telles franges sur l’atome de Césium que l’on fait fonctionner l’horloge atomique qui définit actuellement la seconde.
Revenons un instant sur la question de savoir par quel chemin la particule est passée. L’interférence ne s’observe que si on n’a aucun moyen de connaître ce chemin. Si on cherche à le déterminer, il faut introduire un nouvel élément dans l’appareillage expérimental, par
exemple ajouter dans l’expérience des fentes d’Young une source lumineuse, un laser, qui éclaire les fentes (figure 2b). Lorsque la particule passe, elle diffuse de la lumière au voisinage de la fente correspondante et l’éclair lumineux peut être détecté pour déterminer le trajet de la particule. On constate bien alors que la particule passe aléatoirement par un trou ou par l’autre, mais aussi que les franges disparaissent : les points d’impact sont maintenant distribués de façon uniforme. En d’autres termes, la particule, en diffusant la lumière qui révèle son chemin a été perturbée de façon telle que les relations de phase existant entre les deux composantes de la fonction d’onde associée sont brouillées, entraînant la disparition des franges. Ce résultat exprime ce que Bohr a appelé le principe de complémentarité. L’existence des franges et l’information sur le chemin suivi sont deux aspect exclusifs l’un de l’autre et complémentaires de la réalité physique. Ils nécessitent l’utilisation d’appareils différents. On est sensible tantôt à l’aspect ondulatoire de la particule, si on utilise un appareil rendant les chemins indiscernables, tantôt à l’aspect corpusculaire, si on utilise un appareil permettant de distinguer les chemins.
Intrication quantique, chat de Schrödinger et décohérence
Venons-en maintenant à une autre conséquence essentielle du principe de superposition, observable dans des systèmes constitués d’au moins deux particules qui interagissent entre elles, puis se séparent. Pour fixer les idées, considérons la collision de deux atomes identiques. Chacun de ces atomes possède deux niveaux d’énergie e et g. Supposons qu’avant la collision, l’atome 1 est excité (état e) et l’atome 2 est dans son état fondamental (état g). Au cours de la collision deux événements différents peuvent survenir. Ou bien les atomes conservent leurs énergies initiales, ou bien ils les échangent. Classiquement, les atomes devraient « choisir » l’une de ces deux possibilités. La règle quantique est différente. Ils peuvent suivre les deux voies à la fois. Le système se trouve après la collision dans une superposition de l’état où l’atome 1 est dans e et 2 dans g et de l’état où 1 est dans g et 2 dans e. À chacun de ces états est associée une amplitude complexe. Les modules élevés au carré de ces amplitudes représentent les probabilités de trouver l’une ou l’autre de ces deux situations au cours d’une mesure effectuée sur les deux atomes. Notons que si le résultat de la mesure sur chaque atome est aléatoire, les corrélations entre les résultats des mesures sont certaines. Si l’atome1 est trouvé dans e, l’atome 2 est dans g et inversement. C’est cette corrélation parfaite, observable quel que soit le type de mesure effectué sur les atomes, que l’on appelle intrication (« entanglement » en anglais). Cette intrication subsiste même si les deux atomes se sont éloignés l’un de l’autre et se trouvent séparés après la collision par une distance arbitrairement grande. Elle décrit une non-localité fondamentale de la physique quantique. Une mesure de l’atome 1 peut avoir un effet immédiat à grande distance sur le résultat de la mesure de l’atome 2 ! Il y a donc entre les deux particules un lien quantique immatériel et instantané. C’est Einstein, avec ses collaborateurs Podolski et Rosen, qui a discuté le premier en 1935 cet aspect troublant de la théorie quantique. On l’appelle depuis le problème EPR. Pour Einstein, il s’agissait là d’un défaut grave de la théorie puisqu’elle prévoyait des effets qui lui paraissaient manifestement absurdes. Depuis, le problème a été repris par d’autres physiciens, notablement John Bell dans les années 60, et des expériences effectuées sur des photons intriqués ont montré que la nature se comportait bien comme la théorie quantique le prescrit. L’une des expériences les plus probantes a été effectuée dans les années 1980 par Alain Aspect et ses collègues à Orsay. Notons que la non-localité vérifiée par ces expériences ne contredit pas le principe de causalité. On ne peut se servir des corrélations EPR pour transmettre de l’information instantanément entre deux points.
Si l’intrication nous apparaît comme bizarre, c’est pour une bonne part parce que, comme les interférences quantiques, elle ne s’observe jamais sur des objets macroscopiques.
Ceci nous conduit à la métaphore fameuse du chat de Schrödinger. Réfléchissant sur le problème EPR, Schrödinger alla en effet plus loin. Qu’est ce qui empêcherait, se demanda-t- il, d’amplifier un phénomène d’intrication microscopique pour y impliquer un système macroscopique? Considérons un atome excité qui émet un photon en se désexcitant. La mécanique quantique nous apprend qu’avant que le photon n’ait été émis de façon certaine, le système se trouve dans une superposition d’un état où l’atome est encore excité et d’un état où il s’est déjà désexcité. Chacun de ces termes est affecté de son amplitude complexe dans l’expression de l’état global du système. Mais, remarque Schrödinger, un seul photon peut déclencher un événement macroscopique. Imaginons en effet notre atome enfermé dans une boîte avec un chat. Supposons que le photon émis par l’atome déclenche un dispositif qui tue le chat. Si l’atome est dans une superposition d’un état où il a émis un photon et d’un état où il ne l’a pas encore émis, quel est à cet instant l’état du chat ? Si l’on admet que le chat peut être décrit par un état quantique bien défini ( et l’on touche là, comme nous le montrons plus loin, à un aspect crucial du problème), on conclut immanquablement à l’existence d’une intrication du système « atome + chat » qui devrait se trouver dans une superposition du chat vivant associé à l’atome excité et du chat mort associé à l’atome désexcité. Une telle situation laissant le malheureux chat suspendu entre la vie et la mort, représentée sur la figure 2c, était jugée burlesque par Schrödinger. Ce problème a fait couler beaucoup d’encre. Certains ont dit que c’est au moment où on cherche à observer si le chat est vivant ou mort qu’un processus mental chez l’observateur « force » la nature à décider. D’autres se sont demandé s’il fallait tenir compte du processus mental du chat lui-même et la discussion a vite versé dans la métaphysique.
Si on veut éviter un tel débat, l’approche pragmatique de Bohr est utile. Pour savoir si la superposition d’états existe, il faut imaginer un dispositif d’observation spécifique. La superposition « chat vivant- chat mort » ne peut être prouvée que si l’on sait réaliser une expérience susceptible de révéler l’interférence des amplitudes complexes associées aux parties « vivante » et « morte » du chat. Schrödinger n’a pas poussé la discussion jusque-là, mais on peut par exemple songer à utiliser comme sonde de l’état du chat une souris
« quantique» à qui l’on demanderait de traverser la boîte. La probabilité que la souris s’échappe devrait alors être le carré de la somme de deux amplitudes, une correspondant au chat vivant, l’autre au chat mort. Verra-t-on dans la probabilité finale un terme
d’interférence ? C’est peu probable et fortement contraire à notre intuition.
La question qui se pose est alors : qu’est-il arrivé aux interférences, pourquoi ont-elles disparu ? La réponse fait intervenir la notion fondamentale de décohérence. La situation que nous avons schématisée à l’extrême a négligé un élément essentiel. Notre chat ne peut être isolé en présence d’un seul atome « décidant » de son sort. Le chat – comme en général tout système macroscopique - est en effet baigné par un environnement constitué de très nombreuses molécules, de photons thermiques, et son couplage avec cet environnement ne peut être négligé. Pour mieux comprendre ce qui se passe, revenons à l’expérience d’Young. Si l’on cherche à déterminer le chemin par lequel la particule est passée, on doit par exemple lui faire diffuser un photon (figure 2b). On intrique alors ce photon avec la particule et on obtient une espèce de paire EPR dont un élément est la particule et l’autre le photon. Si on mesure le photon dans un état, on sait que la particule est passée par un trou. L’autre état a alors disparu. Il n’y a plus d’interférence. On comprend ainsi mieux la complémentarité comme un effet d’intrication de la particule avec l’environnement (ici le photon) qui interagit avec elle. La situation de notre chat est similaire. Notons tout d’abord que le point de départ de notre raisonnement, l’existence d’un état quantique bien déterminé pour le chat à l’instant initial de l’expérience, doit être remis en question. Dès cet instant, le chat est déjà intriqué avec son environnement et ne peut donc pas être décrit par un état quantique qui lui est propre. En admettant même que l’on puisse le découpler du reste du monde à cet instant
initial, il serait impossible d’éviter son interaction avec l’environnement pendant qu’il interagit avec l’atome unique imaginé par Schrödinger. Dès qu’il serait placé dans un état de superposition, il interagirait aussi avec un bain de molécules et de photons qui se trouveraient rapidement dans des états quantiques différents suivant que le chat est vivant ou mort. Très vite, une information sur l’état du chat fuirait dans l’environnement, détruisant les interférences quantiques, de la même façon que le photon diffusé par la particule dans l’expérience de Young fait disparaître les franges. L’environnement agit comme un « espion » levant l’ambiguïté quantique.
Notons enfin que la décohérence se produit de plus en plus vite lorsque la taille des systèmes augmente. Ceci est dû au fait que plus le système est gros, plus il est couplé à un grand nombre de degrés de libertés de l’environnement. Il n’est pas nécessaire de considérer des systèmes aussi macroscopiques qu’un chat pour que la décohérence domine. C’est déjà le cas pour les systèmes microscopiques au sens de la biologie que sont les macromolécules, les virus ou les bactéries. Le fait que l’on aît raisonné sur des êtres vivants n’a non plus rien d’essentiel ici. La décohérence est tout aussi efficace sur un objet inerte constitué d’un grand nombre de particules (agrégat d’atomes, grain de poussière...). L’image du chat n’est qu’une métaphore extrême imaginée par Schrödinger pour frapper les esprits.
Des atomes et des photons dans une boîte
Passons à la description de quelques expériences récentes sur l’intrication quantique, véritables réalisations des expériences de pensée. Il existe essentiellement trois systèmes sur lesquels des manipulations relativement complexes d’intrication ont été réalisées. Les sources de photons intriqués se sont considérablement améliorées depuis les expériences d’Aspect. On réalise à présent des paires de photons intriqués en décomposant dans un cristal non-linéaire un photon ultraviolet en deux photons visibles ou infrarouge. De belles expériences sur ces paires de photons ont été récemment réalisées, à Innsbruck, à Genève et aux États-Unis. Dans certains cas, il est préférable de disposer de particules massives, qui restent un long moment dans l’appareil pour être manipulées, au lieu de photons qui s’échappent du système à la vitesse de la lumière. On peut alors utiliser des ions piégés dans un champ électromagnétique. Il s’agit d’atomes auxquels on a arraché un électron et qui possèdent ainsi une charge sensible aux forces électriques exercées sur elle par un jeu d’électrodes métalliques convenablement agencées. On peut ainsi piéger quelques ions observables par la lumière de fluorescence qu’ils émettent lorsqu’ils sont éclairés par un laser. D’autres lasers peuvent servir à manipuler les ions. De belles expériences d’intrication ont été ainsi faites à Boulder dans le Colorado.
Le troisième type d’expérience, réalisé à l’École Normale Supérieure à Paris, est intermédiaire entre les deux précédents. On y intrique à la fois des photons et des atomes. Les photons ne se propagent pas, mais sont piégés dans une cavité électromagnétique traversée par les atomes. La cavité est formée de miroirs métalliques en niobium supraconducteur à très basse température placés l’un en face de l’autre. Des photons micro-onde peuvent se réfléchir des centaines de millions de fois sur ces miroirs et rester ainsi piégés pendant un temps de l’ordre de la milliseconde. Des atomes, préparés dans un état de Rydberg très excité, traversent un à un la cavité, interagissent avec les photons et sont ensuite ionisés et détectés. La grande taille de ces atomes (figure 1c) les rend extrêmement sensibles au couplage avec le rayonnement de la cavité, une condition essentielle à l’observation des phénomènes d’intrication quantique.
Nous donnerons ici simplement un aperçu général sur quelques expériences récentes d’intrication atome-cavité. Pour simplifier, admettons que nos atomes possèdent essentiellement deux niveaux de Rydberg appelés comme précédemment e et g. La séparation des miroirs est, dans un premier temps, réglée pour que les photons de la cavité soient
résonnants avec la transition entre ces deux niveaux. Cela veut dire que si l’atome entre dans la cavité dans le niveau e, il peut, en conservant l’énergie, y émettre un photon en passant dans le niveau g et que s’il y entre dans g, il peut absorber un photon présent pour passer dans l’état e. Envoyons un atome dans e à travers la cavité initialement vide et réglons le temps de traversée de la cavité par l’atome pour que la probabilité d’émission d’un photon soit de
50 %. L’état final obtenu est une superposition d’un atome dans e avec une cavité vide et d’un atome dans g avec une cavité contenant un photon, ce qui constitue une intrication atome- photon. Cette intrication survit à la sortie de l’atome de la cavité.
Compliquons maintenant la situation en envoyant dans la cavité deux atomes, l’un dans e, l’autre dans g. Le premier atome a sa vitesse réglée pour émettre avec 50 % de probabilité un photon et le second interagit le temps qu’il faut pour absorber à coup sûr le photon s’il y en a un. Il s’agit donc d’un transfert d’énergie entre les deux atomes induit par la cavité. Si on se demande, après la traversée des deux atomes, si l’excitation a été transférée de l’un à l’autre, la théorie quantique nous donne une réponse ambiguë : oui et non à la fois. Le résultat est une paire d’atomes intriqués. Le schéma – illustré sur la figure 3 - se généralise avec un plus grand nombre de particules. On peut réaliser des situations où deux atomes et un photon, ou encore trois atomes, sont intriqués...
Une version de laboratoire du chat de Schrödinger
Envisageons maintenant une situation où la cavité est désaccordée par rapport à la fréquence de la transition atomique. La non-conservation de l’énergie interdit alors l’émission ou l’absorption de photons par l’atome. Cela ne veut pas dire cependant que les deux systèmes n’interagissent pas. La simple présence de l’atome dans la cavité modifie légèrement la fréquence du champ qu’elle contient. Cet effet dépend de l’état d’ énergie de l’atome. La fréquence du champ est augmentée ou diminuée, suivant que l’atome se trouve dans un niveau ou l’autre. Que se passe-t-il alors si l’atome est dans une superposition des deux états ? Les lois quantiques disent que l’on doit avoir en même temps une fréquence diminuée et augmentée. Cette réponse ambiguë conduit à la possibilité de créer un nouveau type d’intrication.
Commençons par injecter entre les miroirs un champ contenant quelques photons à l’aide d’une source micro-onde couplée à la cavité par un guide d’onde, puis coupons cette source. Nous piégeons ainsi quelques photons dans la cavité pendant un temps d’une fraction de milliseconde. Le champ électrique de l’onde qui leur est associée est une fonction périodique du temps. On peut représenter cette fonction par un nombre complexe dont le module et la phase correspondent à ceux du champ. Ce nombre complexe est associé à un vecteur (on retrouve la représentation des nombres complexes évoquée plus haut, introduite en optique par Fresnel). L’extrémité du vecteur se trouve dans un petit cercle d’incertitude qui reflète l’existence pour de tels champs contenant quelques photons des fluctuations quantiques d’amplitude et de phase. Envoyons à présent dans la cavité notre atome dans une superposition des états e et g (Figure 4a). Sa présence a pour résultat de changer de façon transitoire la période des oscillations du champ et donc de le déphaser, c’est-à-dire de déplacer les instants où il passe par ses maxima et minima (Figure 4b). De façon équivalente, le vecteur représentatif tourne dans le plan de l’espace des phases. Mais du fait que l’atome est dans une superposition de deux états produisant des effets de signes opposés, on a deux états de phases différentes, intriqués aux deux états atomiques, une situation qui rappelle celle du chat de Schrödinger (Figure 4c). On voit également que le champ est une espèce d’aiguille de mesure qui « pointe » dans deux directions différentes du plan de Fresnel suivant que l’atome est dans e ou g, jouant ainsi le rôle d’un appareil de mesure qui « observe » l’atome.
Cette remarque nous conduit à décrire une expérience de démonstration simple du principe de complémentarité. Nous avons vu qu’ en soumettant l’ atome à deux impulsions lumineuses mélangeant les états e et g, aux instants t1 et t2 (en appliquant à l’atome deux impulsions dans les « zones de Ramsey » indiquées par des flèches sur la Figure 5a), on obtient, pour la probabilité finale de trouver l’atome dans g, un signal de franges d’interférence. Ces franges ne s’observent que si rien dans le dispositif ne nous permet de savoir dans quel état se trouve l’atome entre les deux impulsions. Soumettons alors l’atome entre t1 et t2 à un petit champ non résonnant stocké dans une cavité. La phase de ce champ tourne d’un angle dépendant de l’état de l’atome. Le champ « espionne » l’atome et les franges vont donc s’effacer. C’est bien ce qu’on observe (figure 5b). Si la rotation de phase du champ est faible, on ne peut en déduire avec certitude l’état atomique et les franges subsistent avec un contraste réduit. Elles disparaissent par contre totalement dans le cas d’une rotation de phase importante, rendant certaine l’information sur le chemin suivi par l’atome. On modifie simplement la rotation de phase du champ en changeant le désaccord de fréquence entre l’atome et la cavité.
La décohérence quantique saisie sur le vif
L’expérience que nous venons de décrire s’intéresse à la superposition des états de l’atome, influencée par la présence du champ. Que peut-on dire de la superposition des états du champ lui-même ? Combien de temps cette superposition d’états survit-elle ? L’environnement du champ est constitué par l’espace qui entoure la cavité, qui peut se remplir de photons diffusés par les défauts de surface des miroirs. En fait, c’est ce processus de diffusion qui limite dans notre expérience la durée de vie du champ à un temps Tcav d’une fraction de milliseconde. Si la cavité contient en moyenne n photons, un petit champ contenant environ un photon s’échappe donc dans l’environnement en un temps très court, Tcav divisé par n. Ce champ microscopique emporte une information sur la phase du champ restant dans la cavité. Ainsi, au bout d’un temps Tcav/n, la cohérence quantique entre les deux composantes du champ dans la cavité a disparu. Ceci explique pourquoi des champs macroscopiques, pour lesquels n est très grand (de l’ordre d’un million ou plus), se comportent classiquement, la décohérence y étant quasi-instantanée. Dans notre expérience cependant, n est de l’ordre de 3 à 10. Le temps de décohérence est alors assez long pour permettre l’observation transitoire d’interférences quantiques associées aux deux composantes de notre « chat de Schrödinger ». Pour cette observation, nous envoyons dans la cavité, après le premier atome qui prépare le « chat », un second atome jouant le rôle de la « souris quantique » évoquée plus haut. Cet atome recombine les composantes du champ séparées par le premier atome de telle sorte qu’il apparaît, dans un signal de corrélation entre les résultats des détections des deux atomes, un terme sensible à l’interférence associée aux deux composantes du chat créé par le premier atome. Ce signal d’interférence (voir Figure 6) décroît lorsque le délai entre les deux atomes augmente. Ce phénomène est d’autant plus rapide que les deux composantes du « chat » sont plus séparées, ce qui illustre un des aspects essentiels de la décohérence, qui agit d’autant plus vite que le système est plus
« macroscopique ». Cette expérience constitue une exploration de la frontière entre les mondes quantique (dans lequel les effets d’interférences sont manifestes) et quantique (dans lequel ces effets sont voilés).
Vers une utilisation pratique de la logique quantique ?
En dehors de leur intérêt fondamental, quelles peuvent être les retombées pratiques de ces expériences et de celles qui sont effectuées sur des ions piégés ou des photons intriqués ?
La logique qui y est à l’œuvre peut être décrite dans le cadre d’une branche en plein développement de l’informatique, qui s’intéresse à la façon dont on peut transmettre et manipuler de l’information en exploitant les lois quantiques. On peut en effet considérer les systèmes à deux états que nous avons considérés (atome à deux niveaux, cavité avec 0 ou 1 photon, champ présentant deux phases possibles) comme des « porteurs » d’information, des « bits » à l’aide desquels on peut coder deux valeurs, 0 ou 1. Nos expériences peuvent être vues comme des opérations sur ces bits, qui les couplent suivant une dynamique conditionnelle. On peut par exemple considérer que le champ (0 ou 1 photon) est un bit
« contrôle » et que l’atome est un bit « cible ». On peut réaliser l’expérience en cavité de sorte que si le bit contrôle est dans l’état 0, le bit cible ne change pas, et que par contre il change d’état si le bit contrôle est dans l’état 1. On obtient alors une porte conditionnelle analogue aux portes utilisées dans les ordinateurs classiques. La nouveauté de cette porte par rapport à celles des ordinateurs usuels est que les bits peuvent être mis dans des superpositions d’états. On manipule ainsi non pas seulement les valeurs 0 ou 1, mais aussi des superpositions de ces valeurs. On parle alors de bits quantiques ou « qubits ». Si on prépare le qubit contrôle dans une superposition de 0 et de 1, le fonctionnement de la porte conditionnelle génère en sortie deux bits intriqués. Cette intrication élémentaire peut être amplifiée en se servant de la sortie d’une porte comme entrée d’une porte en cascade et ainsi de suite. On peut construire de la sorte des combinaisons complexes d’opérations. L’intrication ainsi réalisée permettrait en principe d’obtenir des situations équivalentes à la superposition cohérente d’un grand nombre d’ordinateurs classiques, travaillant en parallèle et interférant entre eux. Pour certains types de calculs (comme la factorisation des grands nombres), on devrait gagner énormément en vitesse d’exécution par rapport à ce que permettent les algorithmes de calcul classiques.
Cette constatation explique en grande part l’engouement actuel pour ce type de recherche. Il faut cependant faire ici une réserve importante. La décohérence est un problème très sérieux pour ce genre de système. Ce que l’on cherche à construire ainsi n’est autre qu’un super chat de Schrödinger dont nous venons de voir la sensibilité extraordinaire au couplage avec l’environnement. Dès qu’un quantum s’échappe de l’ « ordinateur », la cohérence quantique est perdue. Certains espèrent résoudre la difficulté en ajoutant des dispositifs correcteurs d’erreurs quantiques. Il s’agit de processus complexes, dont la mise en œuvre efficace est loin d’être évidente. L’ avenir de l’ordinateur quantique reste – et c’est un euphémisme – bien incertain. D’autres applications de la logique quantique, moins sensibles à la décohérence, sont plus prometteuses. Le partage entre deux observateurs de paires de particules intriquées ouvre la voie à une cryptographie quantique permettant l’échange d’informations secrètes, suivant une procédure inviolable. Des expériences très encourageantes ont été réalisées en ce domaine. La téléportation quantique permet de reproduire à distance, en se servant des propriétés de l’intrication, l’état d’une particule quantique. Cet effet pourrait lui aussi être utilisé dans des dispositifs de traitement quantique de l’information.
Conclusion : la « gloire et la honte du quantum »
Au terme de cette brève exploration de la physique quantique, concluons sur un mot du physicien Archibald Wheeler, l’un des derniers survivants de la génération des fondateurs de la théorie. Réfléchissant sur ce siècle des quanta, il a parlé sous une forme lapidaire de « la gloire et de la honte du quantum ». La gloire c’est bien sûr l’immense succès de cette théorie pour nous faire comprendre la nature. La honte, c’est qu’au fond, on ne « comprend » pas la théorie. En essayant d’utiliser un langage issu de notre monde classique, on arrive à des problèmes d’interprétation troublants. En fait, beaucoup de physiciens ne se posent pas ces problèmes. La nature est ce qu’elle est, quantique sans doute, et ils l’admettent sans états
d’âme, obéissant à l’injonction de Bohr à Einstein : « arrête de dire à Dieu ce qu’il doit
faire » ! Pour d’autres, il manque encore une formulation de la théorie qui réconcilierait notre intuition avec le monde tel qu’il est. La nouveauté de cette fin de siècle est que ce problème, longtemps réservé aux théoriciens et aux « imagineurs » d’expériences de pensée, s’ouvre maintenant aux expériences réelles.
Réaliser ces expériences de pensée est un défi amusant et excitant. C’est un plaisir rare de pouvoir suivre in vivo la danse des atomes et des photons qui obéissent de façon si parfaite aux injonctions de la théorie quantique. Il faut cependant constater que ces expériences deviennent de plus en plus difficiles lorsqu’on augmente la taille du système. Maintenir ne serait-ce qu’un modèle réduit de chat de Schrödinger suspendu dans une superposition cohérente d’états est vraiment difficile. Même si l’ordinateur quantique n’est pas vraiment en vue, ce domaine de recherche nous réserve cependant encore bien des surprises. Il y aura sans doute des applications de toute cette physique, et, comme c’est souvent le cas, ce ne seront vraisemblablement pas celles que l’on prévoit.
RÉFÉRENCES :
Sur l’intrication quantique et la décohérence :
W. ZUREK, « Decoherence and the transition from quantum to classical », Physics Today, Vol 44, No 10, p36 (1991).
Sur les expériences d’atomes en cavité :
P.R. BERMAN (éditeur) : « Cavity Quantum Electrodynamics », Academic Press, Boston (1994)
S. HAROCHE, J.M. RAIMOND et M. BRUNE, « Le chat de Schrödinger se prête à l’expérience », La Recherche, 301, p50, Septembre 1997.
Sur l’information quantique :
D. BOUWMEESTER, A. EKERT et A. ZEILINGER (éditeurs) « The physics of quantum information », Springer Verlag, Berlin, Heidelberg (2000).
Légendes des figures :
Figure 1. Représentation des orbitales de l’état fondamental (a), du premier état excité (b) et d’un état de Rydberg très excité (c) de l’électron de l’atome d’hydrogène. La figure (c) n’est pas à l’échelle (une orbitale de Rydberg peut avoir un diamètre mille fois plus grand que celui d’un état fondamental).
Figure 2. Interférences quantiques : (a) Expérience d’Young : chaque particule traverse l’interféromètre suivant deux chemins indiscernables et les points d’impact sur l’écran reproduisent une figure de franges. (b) Si on cherche à déterminer le chemin suivi, l’interférence disparaît (complémentarité). (c) quand on essaye de superposer deux états distincts d’un système macroscopique (superposition symbolisée par le signe + d’un « chat vivant » et d’un « chat mor t » dans une boîte), l’environnement (molécules dans la boîte) s’intrique avec le système, supprimant très rapidement les effets d’interférence (décohérence).
Figure 3. Expérience préparant une paire d’atomes intriqués : deux atomes, le premier dans l’état e, le second dans g sont envoyés dans une cavité initialement v ide, formée de deux miroirs se faisant face. Si les temps d’interaction atome-champ sont convenablement réglés, les deux atomes émergent dans une superposition d’états.
Figure 4 : Principe de la préparation d’un état « chat de Schrödinger » du champ dans la cavité : (a) un atome dans une superposition de deux états traverse la cavité. (b) il donne au champ deux phases à la fois. (c) Chaque composante de phase est représentée par un vecteur pointant dans une direction donnée.
Figure 5 : Expérience de complémentarité : (a) Principe : l’atome suit deux
« chemins » entre les zones de Ramsey et la phase du champ dans la cavité fournit une information levant l’ambiguité. (b) Signal : La probabilité de détecter l’atome dans le niveau g est enregistrée en fonction de la fréquence appliquée dans les zones de Ramsey, pour trois valeurs du déphasage du champ. Les franges sont d’autant moins visibles que les deux composantes du champ dans la cavité sont plus séparées.
Figure 6. Expérience de décohérence : (a) Principe : l’atome 1 prépare la superposition d’états de phases différentes du champ dans la cavité et l’atome 2 la sonde après un délai variable. (b) Signaux de corrélation à deux atomes en fonction du délai entre eux, obtenus en moyennant les résultats d’un grand nombre de réalisations. Le nombre moyen de photons est 3,3. L’expérience est effectuée pour deux séparations différentes des composantes du champ (cercles et triangles expérimentaux). Les courbes sont théoriques.
VIDEO CANAL U LIEN
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] Précédente - Suivante |
|
|
|
|
|
|