ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

L'ESSENTIEL SUR... Les 4 interactions fondamentales

 


 

 

 

 

 

L'ESSENTIEL SUR...
Les 4 interactions fondamentales


Publié le 19 juillet 2018
 
Quatre interactions fondamentales régissent l’Univers : l’interaction électromagnétique, l’interaction faible, l’interaction nucléaire forte et l’interaction gravitationnelle. Les interactions électromagnétique, forte et faible sont décrites par le modèle standard de la physique des particules, qui est en cohérence avec la physique quantique, tandis que l’interaction gravitationnelle est actuellement décrite par la théorie de la relativité générale. Quelles sont les propriétés de chacune de ces interactions ? Quel est leur impact sur notre quotidien ? Quels sont les enjeux de la recherche sur les interactions fondamentales ?
L’INTERACTION ÉLECTROMAGNÉTIQUE (FORCE ÉLECTROMAGNÉTIQUE)

L’interaction électromagnétique régit tous les phénomènes électriques et magnétiques. Elle peut être attractive ou répulsive : par exemple, deux pôles d’aimants de même signe (« nord » ou « sud ») vont se repousser alors que deux pôles d’aimants de signe opposé vont s’attirer.

Cette interaction est liée à l’existence de charges électriques et est notamment responsable de la cohésion des atomes en liant les électrons (charge électrique négative) attirés par le noyau de l’atome (charge électrique positive).

Le photon est la particule élémentaire associée à l’interaction électromagnétique.

Il est de charge électrique nulle et sans masse, ce qui fait que cette interaction a une portée infinie.

J.C. Maxwell écrit, vers 1864, la théorie de l’électromagnétisme qui explique l’existence d’ondes électromagnétiques (ondes radio, infra-rouge, lumière, ultra-violet, rayons X et gamma). Leur importance n’est plus à démontrer.
Dans la seconde moitié du XXe siècle, cette théorie a été reformulée grâce notamment aux travaux du physicien Feynman sous la forme de l’électrodynamique quantique pour y introduire les concepts quantiques de façon cohérente et qui décrit l’interaction comme un échange de photons.

L’INTERACTION FAIBLE (FORCE FAIBLE)
L’interaction faible est la seule qui agit sur toutes les particules, excepté sur les bosons. Elle est responsable de la radioactivité Bêta, elle est donc à l’origine de la désintégration de certains noyaux radioactifs.

Le rayonnement Bêta est un rayonnement émis par certains noyaux radioactifs qui se désintègrent par l'interaction faible. Le rayonnement β+ (β-) est constitué de positons (électrons) et se manifeste lorsqu’un proton (neutron) se transforme en neutron (proton). Un neutrino (antineutrino) électronique est également émis. Ce rayonnement est peu pénétrant : un écran de quelques mètres d'air ou une simple feuille d'aluminium suffisent pour l’arrêter.

Les particules élémentaires associées à l’interaction faible sont le boson neutre (le Z0) et les deux bosons chargés (les W+ et W−). Ils ont tous une masse non nulle (plus de 80 fois plus massifs qu’un proton), ce qui fait que l’interaction faible agit à courte portée (portée subatomique de l’ordre de 10-17 m).


La datation au carbone 14 est possible grâce à l’interaction faible. Le carbone 14 est un isotope radioactif du carbone qui se transforme en azote 14 par désintégration Bêta moins. Sa période radioactive, temps au bout duquel la moitié de ses atomes s’est désintégrée, est de 5 730 ans.

La technique du carbone 14 permet de dater des objets de quelques centaines d’années à 50 000 ans environ.

LE NEUTRINO


Le neutrino, particule élémentaire du modèle standard, n’est sensible qu’à l’interaction faible.
Le neutrino est un lepton du modèle standard de la physique pouvant prendre trois formes (ou saveurs) : le neutrino électronique, muonique et tauique. Les neutrinos n'ont pas de charge électrique et ont une masse très faible dont on connaît seulement une borne supérieure. Ils se transforment périodiquement les uns en les autres selon un processus appelé "oscillation des neutrinos". N'étant sensibles qu'à l'interaction faible, les neutrinos n'interagissent que très peu avec la matière si bien que pour absorber 50 % d'un flux de neutrinos, il faudrait lui opposer un mur de plomb d'une année-lumière d'épaisseur.


L’INTERACTION NUCLÉAIRE FORTE OU INTERACTION FORTE (FORCE FORTE)
L’interaction forte permet la cohésion du noyau de l’atome. Elle agit à courte portée au sein du proton et du neutron. Elle confine les quarks, particules élémentaires qui composent les protons et neutrons, en couples "quark−antiquark" (mésons), ou dans des triplets de quarks (un ou deux autres (anti) quarks) (baryons). Cette interaction se fait par l'échange de bosons appelés "gluons".

Le gluon est la particule élémentaire liée à l’interaction forte. La charge associée à cette interaction est la "charge de couleur". Lors de l'échange d'un gluon entre deux quarks, ils intervertissent leurs couleurs. L’interaction entre deux quarks est attractive et d’autant plus intense que ceux-ci sont distants l’un de l’autre, et est quasi nulle à très courte distance.

La réaction primordiale de fusion de deux protons en deutéron (un isotope naturel de l’hydrogène dont le noyau contient un proton et un neutron) est un processus dû à l’interaction faible dont le taux gouverne la lente combustion des étoiles. C’est ensuite l’interaction forte qui est à l’œuvre dans les chaînes de réactions nucléaires qui suivent et qui produisent d’autres noyaux.

Cette interaction est notamment responsable des réactions nucléaires qui ont lieu au sein du Soleil.

La réaction de fusion nucléaire

Les quarks portent une charge de couleur qui est à l’interaction forte ce que la charge électrique est pour la force électromagnétique. Un quark peut avoir trois couleurs, appelées par convention rouge, bleu et vert. Un antiquark a l’une des « anticouleurs » correspondantes : antirouge, antibleu et antivert.

Les quarks forment des particules composites « blanches », c’est-à-dire sans charge de couleur. Il y a deux manières de former ces hadrons : soit en combinant un quark et un antiquark dont la couleur et l’anticouleur s’annulent (par exemple rouge et antirouge) ; on parle alors de « méson ». Soit en associant trois quarks porteurs chacun d’une couleur différente ; de telles particules sont appelées « baryons » – par exemple le proton et le neutron.


L'INTERACTION GRAVITATIONNELLE (FORCE GRAVITATIONNELLE)
Dans la vision de la loi de la gravitation universelle de Newton, l’interaction gravitationnelle est celle qui agit entre des corps massifs. La force est attractive. La pesanteur et les mouvements des astres sont dus à la gravitation.

    
Dans le cadre de la relativité générale, la gravitation n’est pas une force mais une manifestation de la courbure de l’espace-temps. La gravitation ne fait pas partie du modèle standard, elle est décrite par la relativité générale. Elle se définit par la déformation de l’espace-temps.


La gravitation est la plus faible des quatre interactions fondamentales. Elle s'exerce à distance et de façon attractive entre les différentes masses. Sa portée est infinie.

La première théorie la décrivant efficacement est celle de Newton en 1687. Pesanteur, mouvements planétaires, structure des galaxies sont expliqués par la gravitation. En 1915, elle est remplacée par la théorie de la relativité générale d’Einstein qui sert de cadre à la description de l’Univers entier et où les masses déforment l’espace-temps au lieu d’y exercer des forces à distance.

A ce jour, on ne sait pas décrire l’interaction gravitationnelle par la mécanique quantique, et on ne lui connaît aucun boson médiateur.

Au niveau théorique, la gravitation pose problème car on ne sait pas la décrire à l’aide du formalisme de la «  théorie quantique des champs  », utilisé avec succès pour les trois autres interactions. L’hypothétique graviton serait la particule médiatrice de la gravitation dans une description quantique de cette interaction.


PORTÉE DE L'INTERACTION ENTRE DEUX CORPS
La masse du boson vecteur (ou médiateur) va définir la portée de l’interaction. Imaginez deux particules en interaction comme deux personnes se lançant une balle, représentant le boson vecteur : plus la balle est légère, plus ils peuvent la lancer loin. Par analogie, plus le boson vecteur est léger, plus la portée de l’interaction est grande.

Type    Particules médiatrices (bosons vecteurs)     Domine dans :
Force forte    Gluons     Noyau atomique
Force électromagnétique    Photon    Électrons entourant le noyau
Force faible     Boson Z0, W+, W-     Désintégration radioactive bêta
Gravitation    Graviton ? (pas encore observé)    Astres


LA THÉORIE DU TOUT : VERS L'UNIFICATION DES INTERACTIONS FONDAMENTALES ?
L’objectif des recherches est de trouver une théorie qui expliquerait simultanément les quatre interactions fondamentales.

L’unification des quatre interactions fondamentales fait partie des axes de recherche principaux de la physique des particules. Une première étape a été franchie il y a une trentaine d’années avec l’unification de l’interaction faible et de la force électromagnétique dans un même cadre : l’interaction électrofaible. Celle-ci se manifeste à haute énergie – environ 100 GeV. La suite logique de ce processus est d’y ajouter l’interaction forte. Mais, si convergence il y a, elle ne devrait se manifester qu’à des échelles d’énergie encore bien plus élevées (1015 ou 1016 GeV), totalement hors de portée des expériences actuelles. L’étape ultime, l’ajout de la gravité à ce formalisme, est encore plus éloignée et se heurte à des problèmes mathématiques non résolus pour le moment.

La théorie des cordes et la théorie de la gravitation quantique à boucles sont les deux cadres théoriques les plus étudiés aujourd’hui.

Les théories de dimensions supplémentaires, dont la théorie des cordes, ont été initialement proposées pour résoudre le problème de l’extrême faiblesse de la gravité. L’une des réponses serait que seule une petite fraction de la force gravitationnelle n’est perceptible, le reste agissant dans une ou plusieurs autres dimensions. Ces dimensions, imperceptibles, seraient courbées et non plates comme les quatre connues de l’espace et du temps.

Les cordes seraient des petits brins d’énergie en vibration qui seraient reliées dans plusieurs « branes » (des cordes qui se seraient étirées et transformées en grandes surfaces).  Les branes seraient comme des barrières entre plusieurs dimensions, jusqu’à 10, mais ces dimensions supplémentaires nous sont invisibles.

Toute la physique fondamentale serait unifiée, c’est-à-dire la mécanique quantique avec la relativité générale.

La gravité quantique à boucles a pour but de quantifier la gravitation. Elle a notamment pour conséquences que le temps et l’espace ne sont plus continus, mais deviennent eux-mêmes quantifiés (il existe des intervalles de temps et d’espace indivisibles). La gravité quantique à boucles cherche à combiner la relativité générale et la mécanique quantique directement, sans rien y ajouter.

Cependant, à ce jour, aucune théorie unique ne peut expliquer de façon cohérente toutes les interactions.

 

     DOCUMENT     cea         LIEN

 
 
 
 

Nanomatériaux

 


 

 

 

 

 

Nanomatériaux

Construire des nanomatériaux aux propriétés nouvelles pour l’énergie, les transports et d’autres applications de la vie quotidienne est un enjeu stratégique.

Publié le 1 juillet 2012

L’observation des matériaux au microscope fait apparaître leur composition, leur structure, granulaire ou fibreuse, et leurs défauts. Elle révèle, par exemple, que les alliages métalliques sont constitués d’agrégats de grains de taille micrométrique.

INFLUENCE DE LA STRUCTURE

La structure détermine les propriétés optiques, mécaniques, électriques, magnétiques, thermiques… des matériaux. En faisant coïncider l’échelle d’homogénéité des matériaux avec l’échelle d’action de phénomènes physiques, on peut modifier certaines de leurs caractéristiques. Ainsi, un verre millistructuré est transparent mais pas superhydrophobe, tandis qu’un verre microstructuré est opaque mais toujours pas superhydrophobe. Seul un verre nanostructuré est transparent et superhydrophobe.
Les nanomatériaux sont donc volontairement façonnés à cette échelle : ils sont constitués d’éléments nanométriques qui vont leur conférer la propriété recherchée. Ils peuvent se présenter sous forme de nanopoudre ou comprennent des nanoparticules intégrées dans une matrice ordinaire (on parle alors de matériaux composites).
En diminuant la taille des grains, on obtient des matériaux plus légers et ayant de meilleures propriétés mécaniques, par exemple plus résistants. Les matériaux obtenus sont plus malléables car les grains glissent plus facilement les uns par rapport aux autres.

Plus un objet est petit, plus sa surface externe est importante par rapport à son volume. Les objets nanométriques sont caractérisés par un nombre d’atomes en surface identique au nombre d’atomes en volume. Les phénomènes de surface jouent donc un rôle désormais prédominant. Le monde naturel l’illustre bien : ainsi, un insecte peut marcher sur l’eau mais, grossi 500 fois jusqu’à la taille d’un éléphant, il n’en serait plus capable.
De plus, ce qui se passe à l’interface entre chaque élément constitutif est aussi très important. Plus il y a d’éléments, plus la surface d’échange augmente. Celle des objets nanométriques est par conséquent immense. Il est ainsi possible de modifier les propriétés d’un matériau en le façonnant à cette échelle. Par exemple, le cuivre formé de nanocristaux est trois fois plus résistant mécaniquement qu’en microcristaux. Une poussière de nanotubes « en vrac » a une immense surface d’échange avec son environnement : plusieurs centaines de mètres carrés par gramme. Cela permet notamment d’augmenter l’efficacité des catalyseurs de l’industrie chimique ou des pots d’échappements pour le même volume de matière.
Certains matériaux réémettent de la lumière visible quand ils sont éclairés : c’est le phénomène de photoluminescence. Sous des rayons ultraviolets, la couleur émise par des nanocristaux de séléniure de cadmium change en fonction de leur dimension, passant du bleu pour des grains de 2 nm au vert pour 3 nm, puis au rouge pour 5 nm. Dotés de cette propriété, les nanocristaux de semi-conducteurs, souvent appelés quantum dots, peuvent être utilisés dans le marquage moléculaire ou encore comme marqueurs d’objets précieux et de produits commerciaux.
On peut ainsi utiliser la réactivité ou les propriétés de certaines nanoparticules pour obtenir des surfaces fonctionnalisées : vitres autonettoyantes, miroirs antibuée, revêtements antibactériens et/ou fongicides… Pour cela, il faut déposer une couche de ces nanoparticules à la surface d’un objet en matériau ordinaire avec des procédés comme le sol-gel ou le dépôt en phase vapeur.

La nature inspiratrice
Le gecko, petit animal qui ressemble à un lézard, a la propriété étonnante de courir au plafond ! En examinant de très près la surface de ses pattes, on a découvert qu’elle est constituée d’un tapis de fibres très serrées qui lui donne cette superadhérence. Des chercheurs sont en train d’en copier la structure pour reproduire cet effet de nano-velcro…
La feuille de lotus, quant à elle, présente une propriété étonnante : elle est superhydrophobe. L’étude nanométrique de sa surface met en évidence une nanostructure qui fait glisser les gouttes, et permet de comprendre comment et pourquoi, même plongée dans l’eau, elle paraît toujours sèche. L’intérêt de cette recherche est de pouvoir fabriquer des verres hydrophobes qui pourraient équiper les véhicules et la lunetterie.
Les objets nanométriques « naturels » sont depuis toujours présents dans notre environnement. Les grains d’argent des émulsions photographiques, la poudre à base d’encre de Chine, les colorants des verres (de certaines cathédrales par exemple) contiennent des nanoparticules. Mais les objets dérivant des nanotechnologies ne sont fabriqués que depuis quelques années. Aujourd’hui, plus de 350 produits grand public sont commercialisés pour lesquels le constructeur mentionne au moins un élément dérivé des nanotechnologies. Parmi eux, on compte des cosmétiques, des systèmes électroniques et des produits ménagers et sportifs.
Pour beaucoup d’applications, des nanoparticules aux propriétés déterminées sont incluses dans une matrice, créant ainsi un matériau composite fonctionnel. Tout, ou presque, est envisageable : béton ultraléger, résistant et auto-cicatrisant, film de polyéthylène antibactérien (en incluant des nanoparticules d’argent) et imperméable aux rayons UV (grâce à des nanoparticules de dioxyde de titane), crèmes solaires incorporant, elles aussi, des nanograins de dioxyde de titane pour l’absorption des UV dangereux pour la peau, céramiques nanorenforcées rendues bio­compatibles, matières plastiques à base de polymères rendues conductrices, ininflammables ou plus résistantes…

DES NANOS AU SERVICE DE L'ÉNERGIE

L’apport des nanomatériaux et des matériaux nanostructurés est stratégique dans le domaine de l’énergie nucléaire du futur, en particulier dans les projets liés aux réacteurs de « Génération IV ».
 

En effet, qu'il s'agisse des nouveaux alliages métalliques renforcés par une dispersion très fine d’oxyde (aciers ODS) ou de composites à matrices céramiques (CMC), les performances de ces matériaux reposent sur leur nanostructuration. Elles permettent par exemple aux premiers de renforcer leur résistance lors de leur utilisation en environnement sévère ; aux seconds de présenter une conductivité thermique élevée. Le développement pour le nucléaire de ces matériaux nanostructurés permettra la diffusion de connaissances, de savoir-faire technologique et d’innovation dans d’autres secteurs industriels.
Les nouvelles technologies de l’énergie intègrent aussi ces recherches.
Premier exemple : les cellules photovoltaïques. Les dispositifs actuels en silicium cristallin convertissent au maximum 16 à 18 % de la puissance du Soleil en énergie électrique, mais la fabrication des cellules est coûteuse, complexe, et exige de grandes précautions. Les nanotechnologistes élaborent des structures photosensibles flexibles, à partir de plastiques conducteurs, actuellement en phase de test.

L’apport des nanomatériaux et des matériaux nanostructurés est stratégique dans le domaine de l’énergie nucléaire du futur.

Pour les piles à combustible, le polymère des membranes a été rendu plus résistant mécaniquement, chimiquement et thermiquement. Les particules de platine, qui jouent le rôle de catalyseur, ont été remplacées par des nanoparticules, permettant ainsi d’économiser du métal précieux.
Le champ des possibles est immense. À l’évidence, des secteurs comme l’aéronautique et l’aérospatial, toujours à la recherche de matériaux légers et ultra-performants, seront de gros utilisateurs. Les moyens de transport terrestres, maritimes et aériens seront plus légers, emporteront plus de charge utile tout en consommant moins d’énergie et donc en polluant moins. L’industrie textile connaîtra aussi sans doute des bouleversements : de nombreux scientifiques travaillent déjà sur des tissus « intelligents ».

 

  DOCUMENT     cea         LIEN

 
 
 
 

La microélectronique : passer du design à la fabrication

 


 

 

 

 

 

La microélectronique : passer du design à la fabrication

Si les puces électroniques se retrouvent aujourd'hui dans de très nombreux objets de la vie quotidienne, c'est qu'elles sont fabriquées en série et contiennent des milliards de composants. Cette production fait appel à des technologies d'une extrême complexité et nécessite donc des infrastructures et des équipements très coûteux.

Publié le 18 octobre 2018

DU SABLE... POUR EXTRAIRE LE SILICIUM
De par ses propriétés de semiconducteur, le matériau de base des circuits intégrés est aujourd'hui encore le silicium. Extrait du sable (oxyde de silicium) par réduction chimique, il est cristallisé sous forme de barreaux de 20 ou 30 cm de diamètre, ensuite sciés en tranches de moins d’un millimètre d’épaisseur qui sont polies jusqu’à obtenir des surfaces lisses à 0,5 nanomètre près. C’est sur cette tranche, appelée wafer, que des centaines de puces sont fabriquées simultanément, grâce à la répétition ou la combinaison d’opérations élémentaires : traitement thermique, nettoyage, dépôt, photolithographie, gravure et dopage. Les dimensions les plus fines obtenues aujourd’hui industriellement permettent de disposer et de connecter des millions de composants de base - les transistors - par circuit, et de multiplier ainsi les fonctionnalités. Cette fabrication collective, qui fait chuter les coûts unitaires, est l’un des atouts majeurs de l’industrie microélectronique. Mais elle durcit aussi les exigences de production : une erreur de manipulation, quelques secondes en plus ou en moins et ce sont plusieurs centaines de circuits qui finissent à la poubelle…


LE DESIGN DES CIRCUITS
Impossible de concevoir un circuit de plusieurs millions d'éléments sans l'aide de l'ordinateur : tout concepteur de puces recourt à la CAO pour déterminer les principales fonctions, puiser des modules dans des bibliothèques informatisées, arranger ces modules les uns par rapport aux autres, simuler le fonctionnement global... L'exercice est long, difficile et incroyablement minutieux : en imaginant qu'un micro-processeur de 100 millions de transistors ait la taille d'un carré de 6 km de côté, chaque isolant de grille de transistor aurait une épaisseur d'un millimètre seulement !


6 étapes clés de fabrication
 1- Le traitement thermique

Réalisé dans des fours à des températures de 800 à 1 200° C, il permet de réaliser des couches d'oxyde et de nitrure de silicium par exemple, réarranger des réseaux cristallins ou effectuer certains dopages.   

2- Les dépôts

Ils apportent à la surface du silicium des couches conductrices ou isolantes : oxydes, nitrures, siliciures, tungstène, aluminium... Ils sont effectués par diverses techniques physiques ou chimiques : dépôt en phase vapeur (CVD), pulvérisation, épitaxie... 

3- La photolithographie


Etape-clé, elle consiste à reproduire dans la résine photosensible le dessin des circuits à réaliser. Ces motifs complexes sont générés en une seule exposition. La lumière d’une source lumineuse de très faible longueur d’onde (UV ou rayons X, pour les gravures les plus fines) y projette l’image d’un masque. Plus la résolution optique est poussée, plus la miniaturisation des circuits est améliorée. 

4- Le nettoyage

Les nombreuses opérations de nettoyage des tranches représentent presque un tiers du temps total de processus de fabrication. 

5- La gravure


A l’inverse du dépôt, la gravure enlève de la matière, toujours dans le but de réaliser un motif. Deux voies principales : la gravure dite humide, qui utilise des réactifs liquides, et la gravure sèche (ou gravure plasma) qui emploie des réactifs gazeux. En 2004, les gravures les plus fines en production mesuraient 130 nm. Dix ans après, elles n’étaient plus que de 14 nm ! 

6- Le dopage

Pour introduire au cœur du silicium les atomes qui vont modifier sa conductivité, les plaquettes sont chauffées entre 800 et 1 100° C dans des fours, en présence du gaz dopant, ou bombardées par implantation à travers un masque par un faisceau d’ions accélérés. Aujourd'hui, réaliser un circuit intégré complexe demande la succession de plusieurs centaines d'opérations. 

La photolithographie
Elle est limitée par les phénomènes de diffraction et de longueur d'onde du faisceau de lumière utilisé. Aujourd'hui, avec des détails de l'ordre de 10 à 20 nm, la photolithographie atteint ses limites techniques et des effets dus à la physique quantique perturbent le fonctionnement des circuits ; par exemple, des électrons sautent d'un « fil » à l'autre par effet tunnel. Les motifs peuvent aussi être gravés au moyen de faisceaux d'électrons, mais les dessins doivent alors être tracés les uns après les autres. La lithographie par faisceau d'électrons (E-beam) permet d'atteindre une résolution nanométrique, correspondant à leur longueur d'onde.


L'ENVIRONNEMENT DE LABORATOIRE
A l'échelle d'une puce, un minuscule grain de poussière représente un rocher qui bouche les chemins creusés pour la circulation des électrons. C'est pourquoi la fabrication a lieu en « salle blanche ». L'air est filtré et entièrement renouvelé 10 fois par minute. Il contient 100 000 à 1 million de fois moins de poussières que l'air extérieur. Les opérateurs portent en permanence une combinaison qui les couvre des pieds à la tête et retient les particules organiques et les poussières qu'ils génèrent naturellement. Les opérations de photolithographie nécessitent une ambiance appelée inactinique : les lampes utilisées, le plus souvent jaunes (la plage de longueur d'onde ultraviolette est retirée), n'ont pas ou peu d'effets photochimiques sur les résines photosensibles recouvrant les wafers.

Animation
Visite virtuelle - Le Leti, laboratoire d'électronique et de technologie de l'information

LA PUCE
Pour finaliser la fabrication, une pellicule métallique est déposée aux endroits où le circuit devra être en contact avec les broches de sortie. Puis les circuits intégrés sont testés, directement sur le wafer. Enfin, celui-ci est découpé pour obtenir des puces, insérées dans un boîtier individuel de protection et reliées aux broches qui vont leur permettre de communiquer avec l'extérieur. Des tests de validation et de qualification, à différentes fréquences et températures, sont alors entrepris.


ZOOM SUR MINATEC


Initié par le CEA et l'Institut national polytechnique de Grenoble, soutenu par les collectivités locales et territoriales, Minatec est le premier pôle européen, et l'un des premiers mondiaux, dédié aux micro et nanotechnologies. Le site est constitué de 45 000 m2  de laboratoires, bureaux et salles blanches (8 000 m2) pour la nanoélectronique et les microsystèmes, une plateforme de nanocaractérisation (1 500 m2), un centre de développement, caractérisation et simulation de composants opto-électroniques, des chambres anéchoides, une plateforme de cybersécurité…
4 000 personnes environ y travaillent, parmi lesquelles 1 200 chercheurs, 1 000 étudiants, 200 enseignants-chercheurs et 1 000 emplois industriels directs.

 

 DOCUMENT     cea         LIEN

 
 
 
 

L'ASTROPHYSIQUE NUCLÉAIRE Généalogie de la matière

 

 

 

 

 

 

 

L'ASTROPHYSIQUE NUCLÉAIRE
Généalogie de la matière


En 1610, pointant sa lunette vers la Lune, Galilée vit des montagnes et en déduisit que la Lune était « terreuse ». Aujourd’hui, la Terre pourrait être qualifiée de céleste, car les éléments qui la composent ont été fabriqués dans les étoiles. L’étude systématique de la structure des noyaux, de leurs comportements et des réactions qui les mettent en jeu a eu un rôle central dans le développement de la théorie de l’origine des éléments.

Publié le 10 décembre 2015

UN PEU DE PHYSIQUE NUCLÉAIRE
Le noyau d’un atome est formé de particules appelées « nucléons » (protons et neutrons), liées entre elles. Le nombre de protons, Z, et le nombre de neutrons, N, varient d’un noyau à l’autre, et toutes les combinaisons (Z, N) ne sont pas possibles.
Neutrons et protons sont liés entre eux par la force nucléaire forte, dont le rayon d’action, très faible, est de l’ordre du millionième de milliardième de mètre (10–15 m). Elle est donc maximale lorsque les nucléons sont au contact ou très proches. Cependant, les nucléons situés près de la surface extérieure du noyau sont moins entourés et donc moins liés que ceux de l’intérieur ; ce déficit d’interaction diminue leur énergie de liaison.
Les protons, dotés d’une charge électrique positive, se repoussent entre eux sous l’effet de la force électrostatique. Cela occasionne une nouvelle diminution de l’énergie de liaison du noyau. Pour limiter cet effet, les noyaux les plus lourds présentent un excès de neutrons, dont la charge électrique est nulle. Par exemple, le noyau du plomb possède 82 protons et 126 neutrons. En revanche, les noyaux plus légers que le calcium (Z = 20) contiennent à peu près autant de protons que de neutrons. La plupart des noyaux ont la propriété d’avoir un nombre pair de protons et deneutrons. Il faut égrainer la liste des noyaux jusqu’au magnésium pour en rencontrer un ayant un nombre impair de nucléons.

Il existe un lien étroit entre microcosme nucléaire et macrocosme astronomique.

INVENTAIRE NUCLÉAIRE
Quels sont les noyaux que l’on trouve dans l’Univers et en quelles quantités ?
Il est possible de se faire une idée raisonnable en analysant la lumière émise par les étoiles grâce à la spectroscopie. Inventée à la fin du XIXe siècle, cette technique permet d’accéder à leurs caractéristiques intrinsèques (comme leur température, leur luminosité ou leur composition), marquant la naissance de l’astrophysique moderne.

Vallée de la stabilité

Les 256 noyaux stables que dénombre la physique nucléaire occupent une région bien définie appelée « vallée de stabilité ». Dans le prolongement de cette vallée, la répulsion électrostatique entre protons devient si forte qu’aucun noyau n’est stable au-delà du plomb (Z = 82). Là se trouvent des noyaux radioactifs naturels, dont certains comme le bismuth, le thorium ou l’uranium ont des durées de vie dépassant le milliard d’années.

UN EXEMPLE, LE SOLEIL
Le Soleil est l’étoile de la Terre. Bien que distant de 150 000 000 km environ, il est facile à étudier.
Les proportions relatives des divers atomes qui le composent sont mesurées par l’analyse du spectre de sa photosphère (sa couche externe, lumineuse). Cela ne donne que la composition de cette région externe, mais les chercheurs considèrent qu’elle est quasi identique à celle du nuage à partir duquel cette étoile s’est formée, il y a 4,56 milliards d’années.
La composition de la photosphère solaire peut être comparée à celle des météorites, seconde source d’information sur la composition du nuage protosolaire, à condition de prendre en compte les éléments les plus volatils (hydrogène, hélium, azote, oxygène et néon par exemple), qui s’en sont en partie échappés depuis leur formation. De plus, l’analyse des météorites en laboratoire permet de déterminer la composition isotopique de la matière du système solaire.
Ces analyses complémentaires fournissent la répartition des éléments et des isotopes caractérisant notre environnement local, véritable pierre de Rosette de l’astrophysique nucléaire.


La table de Mendeleïev
La table périodique des éléments de Mendeleïev permet de classer les différents éléments chimiques découverts à ce jour par nombre de protons dans le noyau, allant de 1 pour l’hydrogène à 92 pour l’uranium, et même plus pour des noyaux n’existant pas à l’état naturel et créés en laboratoire.

Elle spécifie les propriétés chimiques des éléments qui dépendent de leur nombre d’électrons. Dans l’Univers, les plus abondants sont, dans l’ordre décroissant, l’hydrogène et l’hélium, puis l’oxygène, le carbone, le néon, le fer, l’azote, le silicium, le magnésium et le soufre.

ASTRONOMIE ET
ASTROPHYSIQUE
L’astronomie traite de l’observation et du mouvement des objets célestes : Soleil, Lune, planètes, comètes, astéroïdes, étoiles. C’est, avec les mathématiques, la plus ancienne des sciences.

L’astrophysique étudie les propriétés physiques de ces objets, leur évolution et leur formation. Elle émerge à lafin du XIXe siècle.

 

 
Le diagramme d'abondance
Le diagramme d'abondance indique, pour chaque élément de la table périodique, la quantité trouvée dans le système solaire. Il est élaboré à partir de mesures et d’observations et est très précieux pour les astrophysiciens.


Sur cette échelle, le silicium, pris comme référence arbitraire, vaut un million.
Pour un million de noyaux de silicium, il y a dix milliards de noyaux d’hydrogène et les noyaux les plus simples, hydrogène et hélium, représentent à eux seuls 98 % de la masse du Soleil.
À partir du carbone, de l’azote et de l’oxygène, les noyaux sont de plus en plus rares, à l’exception notable du fer, dont le noyau est le plus robuste de la nature. S’il y a peu de lithium, béryllium et bore (Z = 3, 4 et 5) c’est que ces noyaux sont fragiles.
Ils ne sont pas produits par fusion thermonucléaire, mais par brisure des noyaux de carbone, d’azote et d’oxygène interstellaires sous l’impact de collisions avec les particules rapides du rayonnement cosmique galactique.

Une étoile s’accommode de sa perte d’énergie lumineuse en puisant dans ses ressources d’énergie nucléaire.
Il faut attendre le début du XXe siècle et le développement de la physique nucléaire pour que les astrophysiciens, qui cherchaient surtout à comprendre le mécanisme qui permettait à une étoile de briller durablement, répondent à la question : où se produisent les réactions nucléaires qui engendrent les noyaux ?
Une étoile est une sphère de gaz chaud dont la cohésion résulte de l’attraction gravitationnelle, qui tend à rapprocher le plus possible ses particules les unes des autres. L’étoile ne s’effondre pas sur elle-même, car la pression du gaz joue contre l’action de la gravité. Pour que cet équilibre soit stable, il faut que la pression augmente régulièrement avec la profondeur, de sorte que chaque couche pesante soit en équilibre entre une plus comprimée et une autre qui l’est moins. Comme un gaz comprimé s’échauffe, la matière stellaire est d’autant plus chaude qu’elle est profonde, et donc que sa pression est grande. Partant de quelques milliers de degrés en surface, la température peut atteindre, selon la masse de l’étoile, quelques dizaines à quelques centaines de millions de degrés dans les régions centrales.
Ce déséquilibre des températures entre le cœur et la surface engendre un transfert d’énergie qui prélève l’excès d’énergie thermique de la région chaude interne pour le céder à la région froide externe. En surface, ce flux d’énergie s’échappe, puis se dilue sous forme de rayonnement : l’étoile brille ; et ne peut briller durablement que si une source interne d’énergie vient compenser le rayonnement émis par la surface.

LES ÉTOILES,
DES RÉACTEURS NUCLÉAIRES

A la fin du XIXe siècle, aucune source d’énergie connue (gravitationnelle ou chimique) n’était capable d’expliquer que le Soleil ait pu briller plus d’un milliard d’années – âge que les géologues donnaient à la Terre – au rythme qui était observé. La solution fut apportée en 1921 par le physicien français Jean Perrin, suivi par l’Anglais Arthur Eddington, qui proposa les réactions nucléaires entre noyaux atomiques comme source de production d’énergie. Il estima que cette réserve d’énergie nucléaire était suffisante pour faire briller le Soleil pendant plusieurs milliards d’années, durée compatible avec l’âge de la Terre alors déterminé par les géologues. Cette idée fut développée quelques années plus tard par le physicien américain Hans Bethe, qui décrivit explicitement les réactions nucléaires qui devaient se produire au cœur du Soleil, travaux qui lui valurent le prix Nobel de physique en 1967.


La réaction de fusion nucléaire

La fusion est l’opération élémentaire d’un jeu de construction nucléaire qui permet de fabriquer tous les éléments. Si deux noyaux légers, comme ceux de l’hydrogène ou de l’hélium, fusionnent pour en former un autre plus lourd, cela dégage de l’énergie. Cette réaction est inhibée par la répulsion électrostatique entre noyaux, qui est d’autant plus forte que leur charge électrique est grande. Alliées à l'effet tunnel, les hautes températures se trouvant au cœur des étoiles peuvent vaincre cette répulsion.
Le centre du Soleil est la seule région où la température et la pression sont suffisamment élevées pour que ces réactions soient possibles. Elles transforment quatre noyaux d’hydrogène en un noyau d’hélium en libérant de l’énergie. Ce sont 619 Mt (millions de tonnes) d’hydrogène qui, chaque seconde, réagissent pour former 614,7 Mt d’hélium, la différence (environ 0,7 % de la masse initiale) étant transformée en énergie, qui compense celle qui s’échappe par la surface.
Finalement, durant la plus grande partie de sa vie, une étoile s’accommode de sa perte d’énergie lumineuse en puisant dans ses ressources d’énergie nucléaire.


LA PREUVE PAR LES NEUTRINOS
Depuis les années 1960, des instruments sont capables de détecter directement certaines des particules élémentaires produites lors des réactions nucléaires se déroulant au cœur des étoiles. Ces neutrinos, particules de la même famille que l’électron, transportant de l’énergie et dont la masse est très faible, sont détectés sur Terre par les expériences souterraines Gallex en Europe, Superkamiokande au Japon, SNO au Canada et Borexino en Italie. La mesure du flux des neutrinos solaires a apporté la confirmation directe de l’existence des réactions de fusion nucléaire.

 

  DOCUMENT     cea         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google