ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

AMELIORER SA VISION

 

Paris, 1er JUIN 2012

Améliorer sa vision grâce à la stimulation magnétique transcranienne


Une équipe internationale menée par des chercheurs du Centre de recherche de l'institut du cerveau et de la moelle épinière (CNRS / Inserm / UPMC), a réussi à augmenter les capacités visuelles d'un groupe de sujets sains grâce à la stimulation magnétique transcranienne (TMS). Après stimulation d'une zone cérébrale de l'hémisphère droit liée à l'orientation de l'attention spatiale et à la conscience perceptive, les sujets ont montré une plus grande aptitude à percevoir une cible apparaissant sur un écran. Ces travaux, qui viennent d'être publiés dans la revue PLoS ONE, pourraient servir à développer de nouvelles techniques de rééducation pour certains troubles de la vision. De plus, ils pourraient permettre d'améliorer les capacités de personnes exerçant des tâches qui nécessitent une très grande précision.
La TMS est une technique non invasive qui consiste à délivrer une impulsion magnétique sur une zone donnée du cerveau. En résulte une activation des neurones corticaux situés dans le rayon d'action du champ magnétique, qui modifie leur activité de façon indolore et temporaire. Depuis quelques années, les scientifiques s'intéressent à la possibilité d'améliorer certaines fonctions cérébrales chez les sujets sains à l'aide de cette technique.

C'est dans ce cadre que se situent les derniers travaux de l'équipe d'Antoni Valero-Cabré sur la stimulation d'une région de l'hémisphère cérébral droit appelée champ oculogyre frontal. Celle-ci n'est pas une aire visuelle primaire à proprement parler, mais elle participe à la planification des mouvements oculaires, ainsi qu'à l'orientation de l'attention de chaque individu dans l'espace visuel. Dans une première expérience, un groupe de sujets sains devait tenter d'apercevoir une cible de très bas contraste apparaissant sur un écran durant 30 ms. Pour certains essais, avant l'apparition de la cible, les sujets recevaient sur cette région frontale une impulsion magnétique d'une durée comprise entre 80 et 140 ms. Résultat, la réussite était plus fréquente après l'utilisation de la TMS. La sensibilité visuelle des sujets sains a été transitoirement augmentée de l'ordre de 12%. Dans une deuxième expérience, les sujets recevaient un bref indice visuel leur indiquant, l'endroit où la cible pourrait apparaître. Dans cette configuration, l'augmentation de la sensibilité visuelle, qui est restée du même ordre, n'était présente que quand l'indice signalait la vraie localisation de la cible.

Bien que les fonctions cérébrales telles que la vision consciente soient très optimisées chez les adultes en bonne santé, ces résultats montrent qu'il existe une marge d'amélioration importante, et que celle-ci peut être « augmentée » par la TMS. Cette technique pourrait être testée pour la rééducation de patients ayant des lésions au niveau du cortex, dues par exemple à un AVC, ainsi que chez des patients souffrant de problèmes rétiniens. La seconde expérience suggère qu'une rééducation basée à la fois sur la TMS et sur des indices visuels pourrait être plus sélective que la seule utilisation de la stimulation. Les chercheurs veulent explorer cette voie grâce à la TMS répétitive qui, cette fois-ci, permettrait d'obtenir une modification durable de l'activité cérébrale.

Par ailleurs, selon les chercheurs, dans un futur proche, la TMS pourrait aussi servir à améliorer les capacités attentionnelles d'individus exerçant des tâches qui réclament d'importantes compétences visuelles.

Ces expériences ont bénéficié du soutien de l'initiative européenne ERANET NEURON BEYONDVIS, financée en partie par l'ANR.

DOCUMENT            CNRS          LIEN

 
 
 
 

AMELIORER SA VISION

 

Paris, 1er JUIN 2012

Améliorer sa vision grâce à la stimulation magnétique transcranienne


Une équipe internationale menée par des chercheurs du Centre de recherche de l'institut du cerveau et de la moelle épinière (CNRS / Inserm / UPMC), a réussi à augmenter les capacités visuelles d'un groupe de sujets sains grâce à la stimulation magnétique transcranienne (TMS). Après stimulation d'une zone cérébrale de l'hémisphère droit liée à l'orientation de l'attention spatiale et à la conscience perceptive, les sujets ont montré une plus grande aptitude à percevoir une cible apparaissant sur un écran. Ces travaux, qui viennent d'être publiés dans la revue PLoS ONE, pourraient servir à développer de nouvelles techniques de rééducation pour certains troubles de la vision. De plus, ils pourraient permettre d'améliorer les capacités de personnes exerçant des tâches qui nécessitent une très grande précision.
La TMS est une technique non invasive qui consiste à délivrer une impulsion magnétique sur une zone donnée du cerveau. En résulte une activation des neurones corticaux situés dans le rayon d'action du champ magnétique, qui modifie leur activité de façon indolore et temporaire. Depuis quelques années, les scientifiques s'intéressent à la possibilité d'améliorer certaines fonctions cérébrales chez les sujets sains à l'aide de cette technique.

C'est dans ce cadre que se situent les derniers travaux de l'équipe d'Antoni Valero-Cabré sur la stimulation d'une région de l'hémisphère cérébral droit appelée champ oculogyre frontal. Celle-ci n'est pas une aire visuelle primaire à proprement parler, mais elle participe à la planification des mouvements oculaires, ainsi qu'à l'orientation de l'attention de chaque individu dans l'espace visuel. Dans une première expérience, un groupe de sujets sains devait tenter d'apercevoir une cible de très bas contraste apparaissant sur un écran durant 30 ms. Pour certains essais, avant l'apparition de la cible, les sujets recevaient sur cette région frontale une impulsion magnétique d'une durée comprise entre 80 et 140 ms. Résultat, la réussite était plus fréquente après l'utilisation de la TMS. La sensibilité visuelle des sujets sains a été transitoirement augmentée de l'ordre de 12%. Dans une deuxième expérience, les sujets recevaient un bref indice visuel leur indiquant, l'endroit où la cible pourrait apparaître. Dans cette configuration, l'augmentation de la sensibilité visuelle, qui est restée du même ordre, n'était présente que quand l'indice signalait la vraie localisation de la cible.

Bien que les fonctions cérébrales telles que la vision consciente soient très optimisées chez les adultes en bonne santé, ces résultats montrent qu'il existe une marge d'amélioration importante, et que celle-ci peut être « augmentée » par la TMS. Cette technique pourrait être testée pour la rééducation de patients ayant des lésions au niveau du cortex, dues par exemple à un AVC, ainsi que chez des patients souffrant de problèmes rétiniens. La seconde expérience suggère qu'une rééducation basée à la fois sur la TMS et sur des indices visuels pourrait être plus sélective que la seule utilisation de la stimulation. Les chercheurs veulent explorer cette voie grâce à la TMS répétitive qui, cette fois-ci, permettrait d'obtenir une modification durable de l'activité cérébrale.

Par ailleurs, selon les chercheurs, dans un futur proche, la TMS pourrait aussi servir à améliorer les capacités attentionnelles d'individus exerçant des tâches qui réclament d'importantes compétences visuelles.

Ces expériences ont bénéficié du soutien de l'initiative européenne ERANET NEURON BEYONDVIS, financée en partie par l'ANR.

DOCUMENT            CNRS          LIEN

 
 
 
 

AUTISME

 

DOCUMENT         CNRS         LIEN

 

Paris, 30 avril 2012

Un modèle de souris pour comprendre les causes synaptiques de l'autisme


L'autisme, grande cause nationale 2012, sera un sujet d'actualité en France tout au long de l'année. Paradoxalement ce syndrome, et surtout ses origines, restent mal connus. Une étude, publiée le 29 avril 2012 dans la revue Nature, présente la première caractérisation neurobiologique et comportementale d'une souris mutée pour le gène SHANK2 qui est associé à l'autisme chez l'homme. En février dernier, l'équipe du Pr Thomas Bourgeron avait démontré que des mutations génétiques dans SHANK2 identifiées chez des patients avec autisme perturbaient le nombre de synapses, points de contact entre les neurones. Ces nouveaux résultats obtenus sur des souris mutantes pour SHANK2 confirment la diminution des synapses et pointent des anomalies spécifiques de certaines régions du cerveau. De plus, les souris sont hyperactives, elles présentent des problèmes d'interactions sociales et vocalisent moins et différemment que les souris non mutées. Ces résultats permettent de mieux comprendre l'origine neurobiologique des troubles du spectre autistique. Ils sont le fruit d'une collaboration franco-allemande entre une équipe de l'unité de Génétique humaine et fonctions cognitives (Institut Pasteur/CNRS/Université Paris Diderot) et des chercheurs de l'université d'Ulm (Allemagne) et du centre de Neuroscience de Berlin (Allemagne).
Les troubles du spectre autistique (TSA) regroupent un ensemble hétérogène de maladies du développement neurologique dont les origines génétiques sont mal connues. Des mutations dans plus d'une centaine de gènes ont déjà été associées aux TSA, mais il est difficile d'évaluer leurs rôles précis dans les fonctions neurales et de hiérarchiser leur importance relative. Les analyses génétiques menées au sein de l'unité de Génétique humaine et fonctions cognitives (Institut Pasteur/CNRS/Université Paris Diderot) ont permis de mettre en évidence des mutations dans des gènes codants des protéines localisées au niveau des synapses, les points de contact et de communication entre les neurones. Un de ces gènes, SHANK2, a été associé récemment à l'autisme et a permis de confirmer le rôle des anomalies synaptiques dans l'autisme1.

Les nouveaux résultats publiés le 29 avril 2012 dans la revue Nature montrent l'effet de la perte de ce gène SHANK2 chez la souris. Les chercheurs du groupe de Tobias Boeckers (Ulm, Allemagne) ont montré que les souris mutées dans le gène SHANK2 avaient moins de synapses que les souris non mutées. L'analyse comparée de plusieurs régions du cerveau a montré que l'impact de la mutation différait selon les régions du cerveau (impact fort dans le striatum, modéré dans l'hippocampe et faible dans le cortex). D'autre part, le groupe de Michael R. Kreutz (Berlin, Allemagne) a montré que les courants synaptiques sont aussi différents.

Enfin, le comportement de la souris a été étudié par le Dr Elodie Ey dans l'équipe du Pr Thomas Bourgeron, chef de l'unité de Génétique humaine et fonctions cognitives (Institut Pasteur/CNRS/Université Paris Diderot). Les souris ne montrent pas de problèmes physiques majeurs ni de problèmes de mémoire. Par contre, elles sont hyperactives et plus anxieuses par rapport aux souris non mutées. De façon intéressante, les souris présentent aussi des problèmes d'interactions sociales ainsi qu'une baisse du nombre et une altération de la structure des vocalisations ultrasonores. Le rôle de ces vocalisations ultrasoniques n'est pas encore bien compris mais le fait qu'elles soient quantitativement et qualitativement différentes chez les souris mutantes ouvre de nouvelles voies pour l'étude plus approfondie des mécanismes sous-jacents à la communication vocale.

"L'établissement de modèles animaux est crucial pour comprendre les origines multiples de l'autisme" explique le Pr Thomas Bourgeron, chef de l'unité de Génétique humaine et fonctions cognitives. (Institut Pasteur/CNRS/Université Paris Diderot). "Nous espérons qu'ils permettront d'identifier de nouveaux traitements basés sur les connaissances acquises".

Cette étude a été financée grâce au concours de Baustein,  la Fondation de France, l'Agence Nationale de la Recherche (ANR), Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung, Einstein Foundation, Neuron-ERANET, la Fondation Orange et la Fondation FondaMental.

 

 

Références :
Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2, Michael J. Schmeisser, Elodie Ey, Stephanie Wegener, Juergen Bockmann, A. Vanessa Stempel, Angelika Kuebler, Anna-Lena Janssen, Patrick T. Udvardi, Ehab Shiban, Christina Spilker, Detlef Balschun, Boris V. Skryabin, Susanne tom Dieck, Karl-Heinz Smalla, Dirk Montag, Claire S. Leblond, Philippe Faure, Nicolas Torquet, Anne-Marie Le Sourd, Roberto Toro, Andreas M. Grabrucker, Sarah A. Shoichet, Dietmar Schmitz, Michael R. Kreutz, Thomas Bourgeron, Eckart D. Gundelfinger et Tobias M. Boeckers. Nature, 29 avril 2012.

 


Notes :
1- Communiqué de presse du 9 février 2012 "De nouveaux résultats soulignent l'importance des gènes synaptiques dans l'autisme". Consulter le site web

 

 

 
 
 
 

LE COEUR.

 

Battements du  coeur.

Notre coeur est formé de plusieurs millions de cellules qui battent au rythme de 50 à 120 pulsations par minute. Les cellules cardiaques comprennent les myocytes qui battent et les fibroblastes qui eux ne pulsent pas mais dont les mouvements sont mis en évidence par microcinématographie en accéléré. Des cellules de coeur de rat sont mises en culture. Les myocytes sont d'abord dispersés, puis après une ou deux semaines de culture, ils se rassemblent et leurs battements se synchronisent. Ces regroupements de myocytes en zones cellulaires homogènes semblent être organisés par les fibroblastes. La communication entre myocytes, réalisée par leurs membranes qui se joignent, semble permettre leur synchronisation.

VIDEO        CNRS          LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google