|
|
|
|
|
|
DYSLEXIE |
|
|
|
|
|
Paris, 22 décembre 2011
Une seule anomalie à l'origine des trois manifestations principales de la dyslexie
Des chercheurs de l'Inserm et du CNRS au sein du Laboratoire de neurosciences cognitives viennent de mettre en évidence qu'une seule anomalie dans une région cérébrale bien précise : le cortex auditif, pourrait être à l'origine des trois manifestations principales de la dyslexie : réussir à manipuler mentalement des sons de parole, difficultés de mémorisation à court terme (capacité à répéter une liste de mots par exemple), et un ralentissement de la capacité de nommer rapidement des séries d'images. Les résultats de ces travaux sont publiés dans la revue Neuron datée du 21 décembre.
Si la compréhension du message écrit est le but de l'apprentissage de la lecture, l'identification des mots est indispensable à cette compréhension. La dyslexie se manifeste chez un enfant, après le début de l'apprentissage de la lecture, par l'absence de maîtrise des correspondances entre les graphèmes (lettres ou groupes de lettres) et les phonèmes (sons de la parole). La persistance du trouble caractérise la dyslexie(1) .
Une anomalie du développement d'aires cérébrales normalement impliquées dans la représentation et le traitement des sons de la parole (la phonologie) est la plus fréquemment rencontrée et constitue l'hypothèse majoritairement admise pour la dyslexie.
L'activité cérébrale de 44 participants adultes, dont 23 dyslexiques, a été enregistrée grâce à la magnétoencéphalographie (MEG) en réponse à un bruit modulé en amplitude à un rythme variant linéairement de 10 à 80 Hz.
Un tel son engendre une réponse corticale auditive dont la fréquence est calée sur le rythme du son, mais cette réponse est plus forte à la fréquence à laquelle le cortex tend à osciller spontanément. Après une reconstruction de source du signal MEG, une analyse temps-fréquence des réponses corticales auditives a été réalisée afin de comparer les profils de réponse dans cortex auditifs droit et gauche, et entre les participants dyslexiques et non dyslexiques (contrôles).
Les chercheurs ont montré chez les dyslexiques une sensibilité réduite du cortex auditif gauche aux sons modulés autour de 30 Hz. La réponse corticale à ces fréquences serait nécessaire au découpage de la parole en unités linguistiques pouvant être associées aux graphèmes. En effet, le défaut de sensibilité aux fréquences de modulation situées autour de 30 Hz corrèle avec les difficultés de traitement phonologique et la dénomination rapide d'images. Les dyslexiques montrent en revanche une réponse corticale accrue aux modulations d'amplitude des sons situées au-delà de 40 Hz. Cette particularité est associée à un déficit de mémoire phonologique. Ces données suggèrent qu'une seule anomalie de résonance du cortex auditif avec la parole serait à l'origine des trois facettes principales de la dyslexie.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
DIABETE |
|
|
|
|
|
Paris, 29 janvier 2012
Le gardien de l'horloge biologique en cause dans le diabète
Depuis quelques années, on sait que les troubles du sommeil augmentent le risque de devenir diabétique. Une équipe franco-britannique coordonnée par Philippe Froguel du laboratoire Génomique et maladies métaboliques (CNRS /Université Lille 2/Institut Pasteur de Lille, Fédération de recherche EGID) (1), en collaboration avec l'équipe de Ralf Jockers (Institut Cochin, CNRS/Inserm/Université Paris Descartes, Paris), vient d'établir la responsabilité d'un gène clé de la synchronisation du rythme biologique dans le diabète de type 2. Les chercheurs lillois ont montré que des mutations du gène du récepteur de la mélatonine, l'hormone de la nuit qui induit le sommeil, augmentent près de 7 fois le risque de développer un diabète. Publiés le 29 janvier 2012 dans Nature Genetics, ces travaux pourraient déboucher sur de nouveaux médicaments pour soigner ou prévenir cette maladie métabolique.
Le diabète le plus fréquent est celui de type 2. Caractérisé par un excès de glucose dans le sang et une résistance croissante à l'insuline, il touche 300 millions de personnes dans le monde, dont 3 millions en France. Ce chiffre devrait doubler dans les prochaines années du fait de l'épidémie d'obésité et la disparition des modes de vie ancestraux. Lié à une alimentation riche en graisses et glucides, ainsi qu'au manque d'activité physique, on sait aussi que certains facteurs génétiques peuvent favoriser son apparition. Par ailleurs, plusieurs études ont montré que des troubles de la durée et la qualité du sommeil sont aussi des facteurs à risque importants. Par exemple, les travailleurs faisant les « trois huit » ont plus de risques de développer la maladie. Jusqu'à présent, aucun mécanisme reliant le rythme biologique et le diabète n'avait été décrit.
Les chercheurs se sont intéressés au récepteur d'une hormone appelée mélatonine, produite par la glande épiphyse (2) lorsque l'intensité lumineuse décroit. Cette hormone, aussi connue sous le nom d'hormone de la nuit, est en quelque sorte le « gardien » de l'horloge biologique : c'est elle qui la synchronise avec la tombée de la nuit. Les chercheurs ont séquencé le gène MT2 qui code pour son récepteur chez 7600 diabétiques et sujets présentant une glycémie normale. Ils ont trouvé 40 mutations rares qui modifient la structure protéique du récepteur de la mélatonine. Parmi ces mutations, 14 rendaient non fonctionnel ce récepteur. Les chercheurs ont alors montré que chez les porteurs de ces mutations, qui les rendent insensibles à cette hormone, le risque de développer le diabète est près de sept fois plus élevé.
On sait que la production d'insuline, l'hormone qui contrôle le taux de glucose dans le sang, décroit durant la nuit afin d'éviter que l'individu ne souffre d'une hypoglycémie. En revanche, durant le jour, la production d'insuline reprend car c'est le moment où l'individu s'alimente et doit éviter l'excès de glucose dans le sang. Le métabolisme et le rythme biologique sont intrinsèquement liés. Mais ces résultats sont les premiers à démontrer l'implication directe d'un mécanisme de contrôle des rythmes biologiques dans le diabète de type 2.
Ces travaux pourraient déboucher sur de nouveaux traitements du diabète à visées préventive ou curatrice. En effet, en jouant sur l'activité du récepteur MT2, les chercheurs pourraient contrôler les voies métaboliques qui lui sont associées . Par ailleurs, ces travaux démontrent l'importance du séquençage du génome des patients diabétiques afin de personnaliser leur traitement. En effet, les causes génétiques du diabète sont nombreuses et l'approche thérapeutique devrait être adaptée aux voies métaboliques touchées par une dysfonction chez chaque patient.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
NANO-MEDECINE |
|
|
|
|
|
Paris, 25 janvier 2012
Nano-médecine : des vésicules polymères emboîtées les unes dans les autres miment la structure cellulaire
En nano-médecine, les principaux enjeux sont de maîtriser la synthèse de vecteurs extrêmement petits contenant un ou plusieurs principes actifs, et de les libérer au moment voulu, à l'endroit souhaité, sous une forme et à une dose contrôlées. Des chercheurs du Laboratoire de chimie des polymères organiques (CNRS / Université Bordeaux 1 / Institut polytechnique de Bordeaux) viennent de parvenir à encapsuler des nano-vésicules dans une vésicule un peu plus grande. De telles structures emboîtées miment l'organisation en compartiments d'une cellule. La reproduire est une première étape majeure avant de pouvoir y déclencher des réactions de façon contrôlée. Ces travaux ouvrent d'ores et déjà des perspectives inédites en termes d'encapsulation multiple, de réacteurs compartimentés et de vecteurs administrés par de nouvelles voies de délivrance (absorption orale par exemple). Ces résultats font l'objet d'une publication le 27 janvier 2012 dans Angewandte Chemie International Edition.
Les principaux nano-vecteurs de médicaments étudiés à ce jour sont des vésicules lipidiques ou « liposomes ». Leurs analogues à base de polymères ou « polymersomes » ont été découverts il y a une dizaine d'années. Ils présentent plusieurs avantages : plus stables et plus imperméables que les liposomes, ils s'avèrent plus facilement « fonctionnalisables et modulables » (il est possible par exemple de synthétiser un polymère thermosensible ou bien capable de reconnaître certaines cellules, notamment tumorales). L'équipe coordonnée par Sébastien Lecommandoux conçoit depuis 10 ans des polymersomes « intelligents » à base de polypeptides dont les propriétés et structures sont analogues à celles des virus.
Pour aller plus loin dans le mimétisme et l'inspiration biologique, une étape devait être franchie : encapsuler ces polymersomes les uns dans les autres. Ce cloisonnement permet de mimer la structure d'une cellule, elle-même constituée de compartiments (des petites organelles1 internes, sièges de milliers d'interactions et de réactions quotidiennes) et d'un cytoplasme viscoélastique, lui conférant entre autres une certaine stabilité mécanique. Mais, former de manière contrôlée des polymersomes emboités les uns dans les autres s'avère complexe.
Les chercheurs sont parvenus à cette prouesse en utilisant une méthode d'émulsion/centrifugation originale, simple d'utilisation, peu coûteuse en temps et en produits, et surtout très efficace. Par imagerie, ils ont ensuite mis en évidence, à l'aide de marqueurs fluorescents, la formation d'une structure « emboîtée » de polymersomes dans un autre. Maîtriser cette compartimentation permet désormais d'envisager l'encapsulation de multiples composés (dans les multiples polymersomes internes) au sein d'un même vecteur. C'est ce qu'ont démontré les chercheurs dans un second temps : ils ont encapsulé deux populations de polymersomes internes différents dans un polymersome unique plus grand. Au vu de leurs résultats, il est envisageable d'incorporer un nombre de vésicules distinctes beaucoup plus important. Cette capacité s'avère très intéressante pour la vectorisation combinatoire, en oncologie par exemple, où la faculté de pouvoir délivrer des composés actifs (parfois incompatibles) au sein d'un même vecteur est recherchée.
Ces structures originales pourraient par ailleurs être utilisées en tant que réacteurs compartimentés, en catalyse ou dans le domaine biomédical. Les chercheurs sont parvenus à encapsuler trois molécules fluorescentes différentes2 (utilisées comme « molécules modèles » de principes actifs) dans les trois compartiments différents que recèlent ces structures, à savoir la membrane du polymersome externe, la cavité aqueuse du polymersome externe et la membrane des polymersomes internes3. On pourrait donc envisager d'encapsuler des réactifs différents dans différents compartiments des polymersomes ou bien de contrôler le déclenchement de réactions différentes, en cascade dans ces polymersomes.
Outre une meilleure protection des principes actifs encapsulés, l'autre intérêt de cette « mise en boite » réside dans un meilleur contrôle, une modulation plus fine des propriétés de perméabilité des vésicules. Les chercheurs ont modélisé cela via une expérience de libération in vitro d'un agent anticancéreux, la doxorubicine (DOX), incorporé dans les polymersomes internes. La DOX est effectivement libérée plus vite (environ deux fois) lorsqu'elle est intégrée dans des nanopolymersomes classiques, que lorsque ceux-ci sont eux-mêmes encapsulés dans des polymersomes externes.
A ce jour, les chercheurs sont les premiers à présenter ce type d'encapsulation multiple et contrôlée dans des vésicules compartimentées, en particulier polymères, contenant également un mime du cytosquelette : ainsi, la structure cellulaire complète est reproduite4. Prochaine étape : parvenir à utiliser cette « mise en boîte » pour effectuer des réactions chimiques contrôlées sur des volumes de l'ordre de l'attolitre (10-18 litre) dans un milieu confiné.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
REPARATION DE L'ADN |
|
|
|
|
|
Paris, 7 septembre 2012
Observer en temps réel la réparation d'une seule molécule d'ADN
L'ADN est sans cesse endommagé par des agents environnementaux tels que les rayons ultra-violets ou certaines molécules de la fumée de cigarette. Sans arrêt, les cellules mettent en œuvre des mécanismes de réparation de cet ADN d'une efficacité redoutable. Une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, est parvenue à suivre en direct, pour la première fois, les étapes initiales de l'un de ces systèmes de réparation de l'ADN encore peu connu. Grâce à une technique inédite appliquée à une molécule unique d'ADN sur un modèle bactérien, les chercheurs ont compris comment plusieurs acteurs interagissent pour réparer l'ADN avec une grande fiabilité. Publiés dans Nature le 9 septembre 2012, leurs travaux visent à mieux comprendre l'apparition de cancers et comment ils deviennent résistants aux chimiothérapies.
Les rayons ultra-violets, la fumée de tabac ou encore les benzopyrènes contenus dans la viande trop cuite provoquent des altérations au niveau de l'ADN de nos cellules qui peuvent conduire à l'apparition de cancers. Ces agents environnementaux détériorent la structure même de l'ADN, entraînant notamment des dégâts dits « encombrants » (comme la formation de ponts chimiques entre les bases de l'ADN). Pour identifier et réparer ce type de dégâts, la cellule dispose de plusieurs systèmes, comme la « réparation transcriptionellement-couplée » (ou TCR pour Transcription-coupled repair system) dont le mécanisme d'action complexe reste encore aujourd'hui peu connu. Des anomalies dans ce mécanisme TCR, qui permet une surveillance permanente du génome, sont à l'origine de certaines maladies héréditaires comme le Xeroderma pigmentosum qui touche les « enfants de la Lune », hypersensibles aux rayons ultra-violets du Soleil.
Pour la première fois, une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, a réussi à observer les étapes initiales du mécanisme de réparation TCR sur un modèle bactérien. Pour y parvenir, les chercheurs ont employé une technique inédite de nanomanipulation de molécule individuelle(1) qui leur a permis de détecter et suivre en temps réel les interactions entre les molécules en jeu sur une seule molécule d'ADN endommagée. Ils ont élucidé les interactions entre les différents acteurs dans les premières étapes de ce processus TCR. Une première protéine, l'ARN polymérase(2), parcourt normalement l'ADN sans encombre mais se trouve bloquée lorsqu'elle rencontre un dégât encombrant, (tel un train immobilisé sur les rails par une chute de pierres). Une deuxième protéine, Mfd, se fixe à l'ARN polymérase bloquée et la chasse du rail endommagé afin de pouvoir ensuite y diriger les autres protéines de réparation nécessaires à la réparation du dégât. Les mesures de vitesses de réaction ont permis de constater que Mfd agit particulièrement lentement sur l'ARN polymérase : elle fait bouger la polymérase en une vingtaine de secondes. De plus, Mfd déplace bien l'ARN polymérase bloquée mais reste elle-même ensuite associée à l'ADN pendant des temps longs (de l'ordre de cinq minutes), lui permettant de coordonner l'arrivée d'autres protéines de réparation au site lésé.
Si les chercheurs ont expliqué comment ce système parvient à une fiabilité de presque 100%, une meilleure compréhension de ces processus de réparation est par ailleurs essentielle pour savoir comment apparaissent les cancers et comment ils deviennent résistants aux chimiothérapies.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 ] Précédente - Suivante |
|
|
|
|
|
|