|
|
|
|
|
|
UN NOUVEAU CAPTEUR... |
|
|
|
|
|
Paris, 08 novembre 2012
Un nouveau concept de capteur pour détecter des molécules d'intérêt médical et agroalimentaire
L'agroalimentaire et la médecine sont toujours à la recherche de méthodes plus efficaces pour détecter des biomolécules. Pour répondre à ces besoins, un nouveau concept de capteurs miniaturisés vient d'être mis au point par des chercheurs du LAAS-CNRS et de l'Université Toulouse III - Paul Sabatier, en collaboration avec la société HEMODIA spécialisée dans le développement de dispositifs médicaux. Ces capteurs peuvent mesurer dans une solution la concentration d'une gamme de molécules telles que le glucose, le lactate ou le glutamate pouvant servir à établir des diagnostics médicaux ou présentant un intérêt pour l'industrie agroalimentaire. Ce dispositif, appelé ElecFET, associe, pour la première fois, un microcapteur d'acidité et une microélectrode métallique présentant sur sa surface une enzyme spécifique à la molécule recherchée. L'avancée technologique est liée à l'imbrication de ces deux composants à l'échelle micrométrique sur une puce électronique en silicium. Ces travaux sont publiés le 08 novembre 2012 dans la revue Biosensors & Bioelectronics.
L'ElecFET (transistor électrochimique à effet de champ) repose sur une réaction chimique entre la biomolécule recherchée et une enzyme de la famille des oxydases capable de la dégrader. La surface de la microélectrode du dispositif présente une couche enzymatique spécifique de la molécule recherchée. Lorsque la molécule s'approche de l'électrode, l'enzyme la capture et la dégrade. Cette réaction produit du peroxyde d'hydrogène, mieux connu sous le nom d'eau oxygénée (H2O2). Le peroxyde est alors oxydé sur l'électrode grâce à une polarisation électrique adaptée, ce qui libère des ions hydroniums H3O+ et entraine une augmentation de l'acidité au voisinage de l'électrode. C'est ce pic d'acidité que le microcapteur de pH associé au dispositif détecte. Ainsi, en fonction de la chute de pH mesurée, l'ElecFET détermine la concentration de la molécule étudiée.
Au-delà du concept innovateur, l'ElecFET constitue une avancée technologique car elle permet, dans un volume extrêmement restreint (inférieur au microlitre), de dégrader la molécule recherchée, de contrôler l'oxydation du peroxyde ainsi produit et de mesurer la variation locale de pH associée. En cela, il est nécessaire que l'imbrication de l'électrode et du capteur pH se fasse à l'échelle micrométrique. Ces deux composants sont finalement intégrés sur une puce silicium, ce qui rend le dispositif compatible avec les technologies de la microélectronique.
L'ElecFET permet de détecter des molécules dans différentes gammes de concentration qui vont de la micromole à la mole par litre (1). L'avantage de ce système par rapport aux technologies actuelles est lié au contrôle potentiel de la réaction: en modifiant la polarisation de la microélectrode, il est possible de changer la gamme de détection du dispositif, et de pallier ainsi à une possible trop faible activité de l'enzyme utilisé. Testé par les chercheurs pour la détection du glucose, du lactate et du glutamate, le dispositif ElecFET a démontré une précision de mesure comparable à celle des technologies actuelles.
De nombreuses applications en médecine et dans l'agroalimentaire sont envisageables avec l'ElecFET. Par exemple, connaître la concentration en glucose dans le sang, ce qui est vital pour les patients diabétiques. Le lactate, que l'on retrouve dans la sueur, est un marqueur du stress physiologique qui décrit, par exemple, l'état de fatigue d'un sportif. Le glutamate est un neurotransmetteur excitateur du système nerveux central dont l'analyse en continu est nécessaire pour le diagnostic de différents désordres neurologiques tels que la maladie d'Alzheimer. Sur le plan de l'agroalimentaire, le lactate est un marqueur de tous les procédés basés sur la fermentation lactique, tandis que le glutamate est un vecteur du goût umami (2). L'éventail de molécules détectées par l'ElecFET pourrait finalement être élargi à l'ensemble des enzymes de la famille des oxydases, ouvrant de nombreuses potentialités d'application.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
CANCER DU COL DE L'UTÉRUS |
|
|
|
|
|
Paris, 8 février 2013
Cancer du col de l'utérus : première résolution 3D d'une oncoprotéine du virus à papillome humain
Des chercheurs strasbourgeois du laboratoire Biotechnologie et signalisation cellulaire de l'École Supérieure de Biotechnologie de Strasbourg (CNRS/Université de Strasbourg) et de l'Institut de génétique et de biologie moléculaire et cellulaire (CNRS/Université de Strasbourg/Inserm) ont résolu, pour la première fois, la structure tridimensionnelle d'une oncoprotéine majeure, impliquée dans la prolifération cellulaire et à l'origine du développement du papillomavirus humain. Celui-ci, de type 16 (HPV 16), est le plus dangereux de ces virus, responsable des cancers du col de l'utérus. Ces travaux, publiés le 8 février 2013 dans Science, devraient permettre l'identification et l'amélioration de médicaments bloquant les activités tumorigènes de la protéine.
Le cancer du col de l'utérus est l'un des cancers les plus fréquents au monde et le deuxième en termes de mortalité chez la femme. Il est provoqué par les virus à papillome humains (HPV) dits à « haut risque muqueux» (1). Le papillomavirus humain de type 16 (HPV 16) est le plus dangereux. Lorsque le virus HPV infecte une cellule saine, il doit provoquer la multiplication de ces cellules pour se reproduire. Deux de ses protéines, E6 et E7, induisent cette prolifération cellulaire et sont responsables de la prolifération des tumeurs du col de l'utérus, d'où leur nom : "oncoprotéines".
L'équipe de Gilles Travé, chercheur CNRS au laboratoire Biotechnologie et signalisation cellulaire (CNRS/Université de Strasbourg), en étroite collaboration avec les équipes de Jean Cavarelli et de Bruno Kieffer de l'Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/Université de Strasbourg/Inserm) a résolu, pour la première fois, les structures tridimensionnelles des protéines E6 des virus à papillomes humain de type 16 (HPV 16) ainsi que son équivalent bovin de type 1 (BPV1). La structure de E6 de HPV16 avait déjà été résolue en 2012 (2) par ces mêmes chercheurs sous forme libre mais, cette fois, les protéines E6 sont visualisées en train de capturer des protéines cellulaires cibles. La structure d'une protéine E6 entière, attendue depuis près de trente ans, n'avait jamais été résolue auparavant car celle-ci est très difficile à produire dans un laboratoire.
Pour ce faire deux processus ont été nécessaires : d'une part la mise au point de techniques permettant d'isoler la protéine E6 et d'autre part l'utilisation combinée de techniques de résonance magnétique nucléaire (RMN) (3) et de cristallographie (4). Après avoir traité différents problèmes d'agrégation et de purification, les chercheurs ont réussi à produire la protéine E6. Le défi à ce stade était de conserver son repliement (la capacité à s'auto-organiser de la protéine et donc sa fonction biologique). L'acquisition de données de RMN et de cristallographie ont permis d'établir la structure de la protéine E6 à l'aide d'outils informatiques et d'obtenir ainsi sa "photographie" tridimensionnelle à haute résolution.
La structure tridimensionnelle de la protéine E6 capturant sa cible révèle précisément le mécanisme moléculaire de son activité cancérogène et explique aussi l'étonnante capacité de la protéine à détourner, tel un terroriste viral, un grand nombre de fonctions de la cellule infectée. Au niveau thérapeutique, cette avancée est d'une grande importance dans la lutte contre le cancer du col de l'utérus, car elle devrait permettre l'identification et l'amélioration de médicaments bloquant les activités tumorigènes de la protéine.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
SCLÉROSE EN PLAQUE |
|
|
|
|
|
Paris, 30 JANVIER 2013
Les hormones androgènes pourraient permettre de traiter la sclérose en plaques
La testostérone et ses dérivés pourraient constituer un traitement efficace contre les maladies de la myéline telles que la sclérose en plaques. C'est ce que montrent les travaux réalisés par des chercheurs du Laboratoire d'imagerie et de neurosciences cognitives1 (CNRS/Université de Strasbourg), en collaboration notamment avec l'unité « Neuroprotection et neurorégénération : molécules neuroactives de petite taille » (Inserm/Université Paris-Sud)2. La myéline compose les gaines qui protègent les fibres nerveuses et permettent d'augmenter la vitesse de l'influx nerveux. Un déficit dans la production de la myéline ou bien sa destruction conduit à de graves maladies pour lesquelles il n'existe actuellement aucun traitement curatif. Les chercheurs viennent de montrer, chez des souris dont les fibres nerveuses du cerveau ont été démyélinisées, que la testostérone et une molécule analogue de synthèse induisent la régénération des oligodendrocytes, les cellules responsables de la myélinisation et stimulent la remyélinisation. Ces travaux viennent d'être publiés dans la revue Brain.
La sclérose en plaques est une maladie dégénérative de la myéline qui s'accompagne d'une inflammation prononcée du système nerveux central. Touchant environ 80 000 personnes en France, elle se caractérise par des troubles de la motricité et de la vision et par des atteintes neurologiques comme des difficultés d'élocution. On savait déjà que la maladie présentait une composante hormonale. En effet, les femmes sont deux fois plus atteintes que les hommes, bien que le pronostic soit moins bon pour le sexe masculin. De plus, il a été observé que les femmes enceintes atteintes de sclérose en plaques se portent mieux durant leur grossesse, lorsque leurs taux d'hormones sont élevés. L'équipe dirigée par le Dr Said Ghandour avait déjà montré l'effet protecteur de la testostérone sur les oligodendrocytes (cellules responsables de la myélinisation).
Pour cette étude, les chercheurs ont tout d'abord induit une démyélinisation chronique des fibres nerveuses dans le cerveau de souris. Pour cela, ils ont intégré à leur nourriture de la cuprizone, une molécule qui séquestre le cuivre. Les souris ont alors présenté une démyélinisation chronique analogue à celle observée au cours de la phase progressive de la sclérose en plaques. Elles ont ensuite été traitées à la testostérone durant 6 à 9 semaines. Résultat : leurs fibres nerveuses ont été à nouveau myélinisées et leurs symptômes se sont remarquablement atténués. Les mêmes effets ont été obtenus en utilisant un analogue de synthèse de la testostérone, la 7-alpha-méthyl-19-nortestostérone (MENT).
Les chercheurs ont par la suite montré que ces androgènes entrainaient la transformation des cellules souches neurales en oligodendrocytes et favorisaient la synthèse de myéline par les oligodendrocytes, conduisant à la préservation de l'intégrité des fibres nerveuses. Ils ont ensuite répété l'expérience, mais cette fois-ci en utilisant deux souches de souris transgéniques : l'une comportait un récepteur des androgènes muté et l'autre un récepteur qui avait été invalidé sélectivement dans le système nerveux central. Sur ces souris insensibles aux androgènes, la testostérone n'a pas stimulé de remyélinisation des fibres nerveuses.
Ces résultats identifient le récepteur des androgènes comme une cible thérapeutique prometteuse pour le traitement de maladies comme la sclérose en plaques. Ils ouvrent la voie à l'utilisation des androgènes pour favoriser la régénération de la myéline. Des travaux complémentaires devraient par ailleurs s'intéresser à la possibilité d'utiliser les taux sanguins de testostérone comme biomarqueurs pour évaluer la progression des maladies démyélinisantes.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
MUCOVISCIDOSE |
|
|
|
|
|
17 septembre 2013
Mucoviscidose : découverte de deux molécules à fort potentiel thérapeutique
La mucoviscidose est une maladie génétique létale qui touche en France 1 enfant pour 4500 naissances. Une équipe internationale menée par des chercheurs de l'Institut fédératif de recherche Necker-Enfants malades (CNRS/Inserm/Université Paris Descartes)1, sous la direction d'Aleksander Edelman, vient de découvrir deux nouvelles molécules qui pourraient traiter les patients porteurs de la mutation la plus fréquente. À l'aide d'un criblage virtuel et d'expérimentations sur des souris et des cellules humaines en culture, les chercheurs ont pu sélectionner, parmi 200 000 molécules, deux composés permettant à la protéine mutée responsable de la maladie de se déployer et de remplir sa fonction. Ces résultats ont été récemment publiés en ligne dans la revue EMBO Molecular Medicine.
La mucoviscidose est une maladie génétique qui touche les épithéliums2 de nombreux organes, en particulier ceux des poumons, du pancréas et de l'intestin. Dans les poumons, elle se manifeste par une hydratation insuffisante de l'épithélium qui débouche sur une surabondance de mucus dans les bronches. Ce mucus retient les agents pathogènes et favorise des infections et des inflammations chroniques qui finissent par être mortelles pour les personnes atteintes.
La maladie est causée par des mutations dans le gène codant pour une protéine appelée CFTR (cystic fibrosis transmembrane conductance regulator). Cette protéine, essentielle pour le passage de l'eau à travers les épithéliums, est un canal ionique qui permet le passage d'ions chlorure à travers la membrane des cellules. Actuellement, environ 2000 mutations du gène conduisant à la maladie sont connues. Néanmoins, 70% des cas de mucoviscidose sont dus à une seule mutation appelée ΔF508. C'est cette mutation que ciblent les molécules qui viennent d'être découvertes.
Les chercheurs ont réalisé un criblage informatique sur 200 000 molécules, recherchant celles qui pourraient interagir avec une zone spécifique de la protéine anormale. Ils ont ainsi trouvé une douzaine de molécules potentiellement actives. Avec ces 12 molécules, ils ont réalisé des tests in-vitro sur des cultures de cellules humaines, et in-vivo sur des souris présentant cette mutation. Ils ont ainsi observé que deux de ces molécules permettent à la protéine mutée ΔF508-CFTR d'être acheminée à la membrane et de remplir son rôle.
Point fort de ce travail, les chercheurs ont décrit le mécanisme d'action de ces deux molécules. En soi, la protéine ΔF508-CFTR, malgré sa mutation, pourrait remplir de façon satisfaisante sa fonction. Le problème est qu'une fois synthétisée, elle est reconnue comme anormale par une autre protéine, la kératine 8, qui favorise sa dégradation. Ainsi, ΔF508-CFTR n'atteint pas la membrane cellulaire. Les molécules découvertes par les chercheurs font obstacle à l'interaction entre la kératine 8 et ΔF508-CFTR. Ainsi, la protéine peut se déployer convenablement et remplir son rôle de canal ionique. Les chercheurs pensent que, dans le cadre d'un éventuel traitement, les deux composés découverts pourraient être associés à des molécules « potentiatrices », qui permettent d'augmenter l'activité de ΔF508-CFTR.
À présent, les chercheurs veulent savoir si, chez les souris modèles de la mucoviscidose, ces deux molécules permettent effectivement de diminuer leur susceptibilité aux infections. Dans les années à venir, ils espèrent aussi commencer les tests cliniques sur des personnes malades.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 ] Précédente - Suivante |
|
|
|
|
|
|