|
|
|
|
 |
|
BACTÉRIES |
|
|
|
|
|
bactérie
(latin scientifique bacterium, du grec baktêrion, petit bâton)
Consulter aussi dans le dictionnaire : bactérie
Cet article fait partie du dossier consacré à la biodiversité.
Être unicellulaire, à structure très simple, dépourvu de noyau et d’organites, au matériel génétique diffus, généralement sans chlorophylle, et se reproduisant par scissiparité.
Les bactéries figurent parmi les plus anciens êtres vivants sur Terre. Elles sont constituées d'une cellule unique dépourvue de noyau : on parle de cellule procaryote (cela les distingue de tous les autres êtres vivants, les eucaryotes). Cette cellule sans noyau est entourée par une membrane doublée d’une paroi plus ou moins épaisse ; à l’intérieur de la cellule flotte le matériel génétique, composé d'une seule molécule d'ADN refermée sur elle-même en cercle. Les bactéries mesurent généralement entre 0,1 et 50 micromètres. Elles peuvent être de forme incurvée ou allongée (bacilles), sphérique (cocci), spiralée (spirilles).
Habitat
On trouve des bactéries dans tous les milieux, y compris ceux où règnent des conditions extrêmes, telles les sources chaudes (plus de 100 °C). Elles sont nombreuses dans les sols, où elles jouent un rôle essentiel de recyclage des débris végétaux et animaux, et dans les eaux douces. Beaucoup vivent aussi en symbiose avec des organismes hôtes (plantes, champignons, animaux), comme par exemple Escherichia coli dans l'intestin humain, mais d'autres sont des parasites qui provoquent des maladies.
Nutrition
Certaines bactéries captent l'énergie lumineuse (bactéries phototrophes), d'autres (les bactéries chimiotrophes) celle contenue dans des substances minérales ou des molécules organiques issues d'êtres vivants. Certaines trouvent leur nourriture directement dans le gaz carbonique de l'air ; d’autres utilisent l'azote gazeux atmosphérique, exploitent les déchets azotés, tirent l'azote de l'ammoniaque ou des nitrates du sol. Grâce à leurs modes de nutrition variés, les bactéries jouent dans la nature un rôle capital en assurant un brassage continuel de la matière entre le sol, l'atmosphère et les autres êtres vivants.
Reproduction
Les bactéries se reproduisent par simple division en deux de leur cellule (scissiparité). Elles peuvent également échanger du matériel génétique (conjugaison) pour brasser leurs gènes.
Relation avec les êtres humains
Certaines bactéries constituent des agents infectieux redoutables pour les êtres humains. De nombreuses parades sont aujourd’hui mises en place pour les contrer : vaccination, stérilisation de produits alimentaires ou de matériel, antibiotiques… etc. Mais ce sont également de précieuses alliées : au-delà du rôle primordial qu’elles jouent dans le métabolisme de nombreux êtres vivants, elles forment aujourd'hui l’un des principaux matériels de base de la recherche en génétique et sont indispensables dans de nombreux domaines industriels.
1. PARTOUT PRÉSENTES
Les bactéries constituent, par leur importance dans la biomasse, leur multiplication rapide et leur action biochimique, un groupe d'une importance capitale pour l'équilibre du monde vivant. En effet, dans un gramme de sol ou un millilitre d’eau douce, les bactéries se comptent par millions ; sur 1 cm2 de peau, elles sont entre 1 000 et 10 000 (au total, les cellules bactériennes sur et dans notre corps sont plus nombreuses que les cellules qui le constituent !).
Les bactéries, au centre du débat sur l'origine de la vie (→ évolution), accompagnent l'aventure de la Terre depuis près de 4 milliards d'années : une bactérie fossile a été découverte dans une roche africaine datant de 3,5 milliards d'années ; des traces fossiles d'activité de cyanobactéries vieilles de 3,8 milliards d'années ont été trouvées dans la baie de Shark, à l'ouest de l'Australie ; d'autres, datant de la même époque, ont été prélevées dans des roches de la région d'Isua, au sud-ouest du Groenland.
Partout présentes (dans les sols, les eaux douces, saumâtres ou salées, l'air, les plantes, les animaux...), les bactéries jouent un rôle capital dans la transformation des éléments constitutifs de la matière vivante.
2. STRUCTURE DES BACTÉRIES
Les bactéries sont des organismes microscopiques unicellulaires qui représentent la plus simple et peut-être la première forme de vie cellulaire ; elles possèdent (et sont différentes en cela des virus) l'ensemble des mécanismes nécessaires à leur propre reproduction. Ce sont des cellules dites procaryotes. Elles se distinguent des cellules eucaryotes en ce qu’elles ne contiennent pas de noyau entouré d'une membrane séparant le matériel génétique du cytoplasme ; elles ne renferment pas non plus d'organites spécialisés comme les mitochondries et les chloroplastes.
Comme les cellules végétales, les bactéries possèdent une paroi entourant leur membrane. La structure de cette paroi permet de différencier les bactéries Gram positif (à paroi épaisse) des bactéries Gram négatif (à paroi fine).
Certaines bactéries sont mobiles, grâce à des cils et/ou des flagelles ; les autres, non ciliées, sont immobiles.
3. FORME
Les bactéries peuvent être isolées, ou rester groupées avec les individus résultant de leur scission. Elles se répartissent en trois grands ensembles de formes :
– sphériques : ce sont les coques ou cocci (coccus au singulier), qui peuvent former des chaînes, comme les streptocoques, ou bien s’agglutiner en « grappes de raisin », comme les staphylocoques ;
– incurvées : ce sont les vibrions, comme le vibrion du choléra par exemple ;
– spiralées : ce sont les spirilles ou spirochètes, à l'origine de spirochétoses (comme Treponema pallidum, agent de la syphilis, ou les bactéries du genre Leptospira).
D'autres bactéries, les mycoplasmes, sont dépourvues de parois rigides, et par conséquent n'ont pas de forme déterminée.
Ensemencées sur certains milieux, les bactéries s'y développent en colonies dont l'aspect (forme, couleur, taille) est différent selon les espèces (surface de la colonie lisse ou rugueuse, à bords réguliers ou dentelés, etc.).
4. TAILLE ET HABITAT
Mille milliards de bactéries de taille moyenne pèsent environ 1 g. La plupart des bactéries mesurent de 0,1 à 4 μm de large et de 0,2 à 50 μm de long. Une espèce, Thiomargarita namibiensis, la plus grande bactérie connue, est, avec 0,75 mm, visible à l’œil nu.
Certaines bactéries (par exemple Clostidium et Bacillus) ont des formes de résistance appelées spores (ou endospores, car elles se forment à l'intérieur du cytoplasme des bactéries), qui leur permettent de survivre à la dessiccation et pendant un certain temps à des températures élevées : elles ne meurent, ainsi, qu'après plusieurs heures à 100 °C (mais sont détruites à partir de 10 à 15 minutes à 120 °C). Elles résistent également aux désinfectants et aux rayonnements ultraviolets, mais sont détruites par les rayonnements ionisants. Il s'agit de la forme de vie la plus résistante que l'on connaisse. On en a même retrouvé dans des momies égyptiennes.
Quelques milliers d’espèces de bactéries ont pu être identifiées à ce jour dans les milieux les plus divers. Bien que dans les milieux extrêmes vivent surtout des archées, dites aussi archéobactéries (procaryotes d’origine très ancienne ressemblant à des bactéries, mais aux caractéristiques physico-chimiques très différentes), on y a également découvert quelques « vraies » bactéries. C’est le cas par exemple d’Acidothermus cellulolyticus, qui apprécie les températures supérieures à 70 °C et les milieux acides (pH autour de 5).
5. MÉTABOLISME
Certaines bactéries ont besoin d'oxygène pour vivre, elles sont dites aérobies strictes (ou obligatoires) [Bacillus, Pseudomonas…] ; d'autres ne peuvent pas survivre en milieu oxygéné, elles sont dites anaérobies strictes (ou obligatoires). Celles qui vivent en présence d’oxygène mais peuvent le cas échéant survivre sans sont dites aérobies-anaérobies facultatives. Inversement, celles qui vivent en l'absence d’oxygène mais tolèrent sa présence sont dites anaérobies-aérobies facultatives.
De nombreuses bactéries photosynthétiques (c'est-à-dire qui pratiquent la photosynthèse) sont anaérobies. Certaines puisent leur énergie grâce, par exemple, à la fermentation lactique, dans la décomposition par les enzymes de molécules organiques. D'autres bactéries fonctionnent par chimiosynthèse (synthèse de molécules chimiques). Contrairement aux bactéries photosynthétiques, les bactéries dites lithotrophes ont recours à des composés inorganiques (soufre, azote) afin d'obtenir l'énergie qui leur est nécessaire. Les sulfobactéries, qui vivent dans un milieu pauvre en oxygène, produisent du soufre, et non de l'oxygène comme les plantes vertes. Dans tous les cas, l'énergie produite est stockée sous la forme de molécules organiques.
6. REPRODUCTION
La plupart des bactéries se reproduisent de manière asexuée par scissiparité : une cellule se divise en deux cellules filles. Chez de nombreuses espèces, lorsque les conditions sont favorables, la division peut avoir lieu toutes les 20 min. Si tous les descendants survivent, la cellule initiale a donc produit au moins 500 000 nouvelles cellules au bout de 6 h ! Un tel rythme explique les capacités de prolifération des bactéries (pathogènes ou non) lorsque les conditions s'y prêtent ; il explique aussi la raison de leur utilisation dans l'industrie.
Certaines bactéries, telle Escherichia coli, pratiquent des échanges de matériel génétique : c’est le phénomène de la conjugaison, qui se rapproche d’une reproduction sexuée dans le sens qu’il permet un brassage des gènes. Une cellule dite « mâle » ou « donneuse » introduit son matériel génétique dans une cellule dite « femelle » ou « receveuse », par l'intermédiaire d'un tube de conjugaison (ce tube est à distinguer du cil ou flagelle, organe locomoteur de la bactérie). Comme dans la reproduction sexuée, les « chromosomes » bactériens (en fait des molécules d’ADN circulaires), supports du matériel héréditaire, se recombinent entre eux. Le plus souvent, un fragment entier de « chromosome » du donneur est incorporé dans le « chromosome » receveur.
Grâce à ces recombinaisons, la conjugaison augmente le polymorphisme (éventail de caractéristiques héréditaires d'une espèce bactérienne), accroissant ainsi les chances de survie des espèces qui la pratiquent.
7. RÔLE ÉCOLOGIQUE
Malgré la mauvaise image attachée aux bactéries, qui les associe à la maladie, il est important de souligner le rôle bénéfique de ces micro-organismes. En effet, la plupart des bactéries sont inoffensives pour les hommes, et nombre d'entre elles contribuent de façon essentielle à la survie des animaux et des végétaux. Seul un petit nombre de bactéries est pathogène, le plus grand nombre n'attaquant que la matière organique morte. Si les bactéries ne décomposaient pas les déchets animaux, les plantes ou les animaux morts, ces matériaux s'accumuleraient indéfiniment. Elles jouent ainsi un rôle majeur dans les cycles de la matière, et contribuent à fertiliser les sols en décomposant le terreau, constitué de terre et de matières végétales mortes.
Les bactéries contribuent aussi à enrichir le sol d'autres façons. Il existe par exemple des bactéries fixatrices d'azote, qui prélèvent ce gaz dans l'atmosphère et le transforment en nitrates utiles aux plantes vertes pour leur croissance. Les légumineuses présentent ainsi de petits nodules situés naturellement à la racine, qui contiennent des bactéries de type Rhizobium, véritables « engrais verts » fixant l'azote atmosphérique. Chez les cyanobactéries, un grand nombre fixe également l'azote de l'atmosphère.
8. CRITÈRES DE CLASSIFICATION DES BACTÉRIES
Les progrès de la biologie au xxe s. ont établi que les bactéries, comme certains autres organismes, n'appartiennent ni au règne animal ni au règne végétal. Classées jusque dans les années 1960 dans le règne végétal, selon le système traditionnel à deux règnes (animal et végétal), les bactéries étaient jusque-là considérées comme la forme la plus élémentaire des champignons (qui ont depuis, eux aussi, été élevés au rang de règne à part entière). On leur attribuait alors le nom de schizomycètes, ou « champignons scissipares ».
Les bactéries ont ensuite été classées dans le règne des procaryotes (êtres unicellulaires sans membrane nucléaire), divisé en deux grands ensembles : les archéobactéries (bactéries « archaïques », présentent sur Terre depuis les balbutiements de la vie) et les eubactéries (« vraies bactéries »). Mais l’on a découvert qu'elles présentent des caractéristiques physico-chimiques bien différentes les unes des autres. En réalité, la différence qui sépare les archéobactéries des bactéries est aussi importante que celle qui sépare eucaryotes et procaryotes : les premières sont désormais rangées dans un règne à part entière, et appelées archées. Le terme d’eubactéries est également abandonné. On considère donc aujourd’hui que les procaryotes rassemblent deux règnes distincts : les archées et les bactéries.
Les critères pour classer les bactéries sont si nombreux qu'il existe plusieurs classifications. On peut les ranger en fonction de leur aptitude à sporuler (bactéries sporulées ou asporulées), de leur réaction à la coloration de Gram (bactéries Gram positif et Gram négatif), de leurs conditions de vie (bactéries aérobies et anaérobies) ou encore des réactions chimiques qu'elles provoquent dans leur milieu (sulfobactéries, ferrobactéries).
LA STRUCTURE DE LA PAROI BACTÉRIENNE
GRAM NÉGATIF ET GRAM POSITIF
La coloration de Gram, méthode mise au point en 1884 par le naturaliste danois Hans Christian Joachim Gram (1853–1938), constitue la technique la plus fréquemment utilisée pour identifier les bactéries, en les divisant en deux groupes : Gram positif et Gram négatif.
L'utilisation de préparations colorées permet d'obtenir d'obtenir des couleurs différentes (violet, rose) selon les bactéries. Cela est dû à la structure des parois cellulaires : le type Gram positif a une paroi cellulaire d'aspect uniforme, alors que celle des Gram négatif est beaucoup plus mince et d'aspect laminé. En médecine, les traitements sont adaptés selon les résultats obtenus : les bactéries Gram positif sont plus sensibles à la pénicilline, alors que les bactéries Gram négatif sont davantage atteintes par les antibiotiques de type streptomycine.
PECTOCELLULOSE OU PEPTIDOGLYCANE
Comme les cellules végétales, les cellules bactériennes sont entourées d'une paroi rigide, mais sa composition est différente. En effet, les premières possèdent une paroi renforcée par de la cellulose (paroi pectocellulosique), tandis que celle des secondes se compose principalement de muréine ou peptidoglycane, macromolécule n'existant que chez les procaryotes. Cette importante différence est à la base de l'activité sélective de certains médicaments, comme la pénicilline. Celle-ci, sans danger pour les plantes et les animaux, est toxique pour les bactéries, car elle empêche le peptidoglycane de se former et compromet ainsi le processus de reproduction.
9. LES BACTÉRIES PATHOGÈNES
Dans les pays en voie de développement, au moins 25 % des enfants meurent d'infections bactériennes (les diarrhées dues à des bactéries, en particulier, tuent 20 % des enfants de 0 à 4 ans). Cette mortalité infantile, qui était celle des États-Unis il y a un siècle, est aujourd'hui inférieure à 5 % dans les pays industrialisés grâce à l'amélioration du système sanitaire, de l'hygiène (au sens large, en incluant la vaccination et l’alimentation).
Pour l'ensemble de la population (adultes compris) à l'échelle mondiale, quelques maladies bactériennes causent encore des ravages. Ainsi, si la quasi-disparition de la fièvre typhoïde (causée par Salmonella typhi) représente un succès de la médecine préventive dans les pays riches, cette maladie frappe encore environ 17 millions de personnes chaque année dans le monde (estimation de l'OMS) – principalement en Asie, en Afrique et en Amérique latine –, et tue plus de 200 000 personnes par an.
9.1. JALONS HISTORIQUES
LA DÉCOUVERTE DES AGENTS INFECTIEUX
Devant la propagation de certaines maladies, on postule dès l'Antiquité l'existence d'agents infectieux transmissibles et invisibles à l'œil nu. Dans son livre sur les maladies contagieuses, publié en 1546, le médecin italien Jérôme Fracastor impute la transmission des maladies à des germes vivants qu'il nomme seminaria contagionis. Sa théorie sur les germes est exacte, mais ne peut être vérifiée qu'un siècle plus tard, après l'invention du microscope, qui rend possible la visualisation des agents mis en cause.
Les bactéries sont observées pour la première fois au xviie s. par un naturaliste hollandais, Antonie Van Leeuwenhoek. Celui-ci fabrique en effet des appareils à lentille unique dont le coefficient de grossissement est suffisant pour qu'il puisse découvrir l’existence de micro-organismes dans de la salive et dans de l’eau. Considéré comme le père de la bactériologie, il garde toutefois secrètes ses méthodes de fabrication et d'utilisation des ancêtres du microscope, ce qui empêche pendant longtemps d’autres naturalistes de concurrencer ses découvertes.
Mais l'on continue toutefois à faire des hypothèses à propos des voies de contamination (par contact direct ou par l'intermédiaire de l'air), ce qui va poser les premières bases de l'épidémiologie et conduire à la réfutation des thèses de la génération spontanée.
Le premier essai notable de classification des bactéries se fait au début des années 1800. Et, en 1829, le naturaliste Christian Gottfried Ehrenberg crée le terme bacterium, inspiré du mot grec baktêrion, qui signifie « petit bâton » – en référence à la forme de certaines bactéries (les bacilles).
SEMMELWEIS, INITIATEUR DE L'ASEPSIE
Vers 1845, Ignác Fülöp Semmelweis, obstétricien hongrois établi à Vienne, souhaite convaincre ses collègues incrédules qu'il est possible d'éviter la fièvre puerpérale qui provoque chaque année des ravages parmi les accouchées. Cette maladie est due à la propagation de streptocoques par les étudiants en médecine qui, quittant la salle de dissection, vont assister leurs patientes lors de l'accouchement sans s'être au préalable lavé les mains.
En obligeant ses étudiants à se désinfecter les mains à l'hypochlorite (solution de chlore plus connue sous le nom d'eau de Javel) avant chaque accouchement, Semmelweis réussit à réduire considérablement l'ampleur de l'infection et le nombre des décès dans le service hospitalier qui lui est affecté. Il est cependant discrédité par ses collègues qui ne voient pas l'importance que revêt cet acte simple.
RECONNAISSANCE DU RÔLE PATHOGÈNE DES BACTÉRIES
Il faut attendre 1876 pour que le rôle pathogène de certaines bactéries soit mis en évidence par le bactériologiste allemand Robert Koch lors de ses recherches sur le charbon (maladie pouvant évoluer vers la septicémie). Koch, dont la découverte est confirmée plus tard par la physicien et chimiste Louis Pasteur, met au point des techniques encore utilisées aujourd'hui pour la culture des bactéries et établit des règles permettant de prouver qu'une bactérie particulière, pathogène, est à l'origine d'une infection donnée.
Ces règles, qui portent le nom de postulats de Koch, peuvent être résumées de la façon suivante : la bactérie doit être présente dans le tissu infecté de chaque patient ; elle doit être isolée en culture pure sur un support artificiel ; l'inoculation de cette culture à des animaux de laboratoire doit causer la même maladie ; les organismes doivent être retrouvés dans les tissus animaux infectés.
Environ dix ans avant que Koch ne parvienne à isoler le bacille du charbon, le chirurgien anglais Joseph Lister a pratiquement réussi à éliminer l'infection des plaies en trempant les pansements dans de l'acide phénique. C'est le début des techniques modernes d'asepsie chirurgicale et le glas des infections postopératoires.
DE LA BACTÉRIE PATHOGÈNE AU VACCIN
Après Koch, des chercheurs en médecine poursuivent ses recherches et identifient de nouvelles bactéries pathogènes. C'est le cas de Pasteur, qui, après des études sur les fermentations, s'intéresse aux maladies de la vigne et du ver à soie, puis à celles des animaux et de l'homme. En 1877, il publie un mémoire sur la fièvre charbonneuse des moutons dans lequel il décrit le mode de propagation et qu'il propose d'endiguer par la vaccination. Puis il s'intéresse à la rage (maladie transmise par un virus aux animaux et aux hommes).
Les vaccins, fabriqués à partir de micro-organismes infectieux (virus, bactéries) spécialement traités, sont inoculés aux hommes et aux animaux afin de les immuniser contre une maladie infectieuse donnée. L'étude des mécanismes de défense corporels face à l'introduction de bactéries donne plus tard naissance à l'immunologie. Celle-ci est donc inséparable de la bactériologie, même si elle constitue une branche séparée de la médecine.
On sait désormais que les bactéries se propagent par l'intermédiaire de l'air, des insectes, de l'eau, de la nourriture, ainsi que par le contact direct avec les hommes, les animaux et les objets contaminés.
9.2. LUTTE CONTRE LES BACTÉRIES PATHOGÈNES
Divers moyens sont mis en œuvre pour détruire les bactéries qui sont dangereuses pour l’homme.
LES TRAITEMENTS PAR LA CHALEUR
La plupart des bactéries meurent à la chaleur. C’est le principe de la pasteurisation, procédé mis au point par Pasteur pour décontaminer le vin, de la stérilisation par la chaleur et de la thermisation.
La pasteurisation
La pasteurisation est utilisée pour éliminer les bactéries pathogènes de divers aliments et boissons, comme le lait, la bière, les jus de fruits, la crème, certains œufs de poisson, les compotes, etc. Elle ne supprime pas la totalité des germes. C’est un traitement doux à la chaleur, entre 65 °C (pasteurisation basse température) et 85 °C (pasteurisation haute température) environ. Le lait, par exemple, est traité en « pasteurisation éclair » : le liquide est chauffé à 72 °C pendant 15 secondes environ, puis très rapidement refroidi. Il doit être ensuite conservé au froid (le lait pasteurisé est un « lait frais », vendu au rayon frais), pendant une durée relativement courte.
La stérilisation par la chaleur
Au-dessus d’une température de 100 °C, toutes les bactéries qui ne sont pas sous une forme de résistance (bactéries non sporulées) meurent. Les bactéries sporulées, elles, disparaissent à partir de 115 °C. On dit que le produit traité est stérilisé. Dans le domaine de l’alimentation, c’est le principe appliqué pour réaliser les conserves, qui sont chauffées entre 115 et 140 °C (procédé d’appertisation, mis au point par Nicolas Appert à la fin du xviiie s.). On l’utilise aussi pour le lait, les jus de fruits, les nectars... : c’est le traitement UHT (ultra-haute température), au cours duquel les aliments sont portés à 135-140 °C pendant 2 à 10 secondes puis immédiatement conditionnés. Ce procédé permet de conserver les aliments pendant plusieurs mois à température ambiante (tant que le conditionnement n’est pas ouvert).
Dans le domaine médical, on utilise la chaleur pour stériliser les instruments chirurgicaux : passage dans un autoclave (pour une stérilisation à la vapeur) après désinfection et nettoyage.
Les bactéries sans spores ne résistent pas à l'eau bouillante. Ainsi, l’eau contaminée peut être stérilisée en la faisant bouillir. L’eau bouillante elle-même permet de stériliser des objets (bocaux pour les confitures, biberons, etc.). Les stérilisateurs (à bocaux ou à biberons) utilisent la vapeur – comme les autoclaves des hôpitaux et des laboratoires.
La thermisation
La thermisation est un traitement du lait qui a été mis au point pour éliminer les bactéries pathogènes, tout en altérant moins le goût et les qualités nutritives que la pasteurisation. Il consiste en un chauffage léger du lait selon plusieurs modalités : 45 °C pendant 30 minutes, 63 °C pendant 16 secondes ou 72 °C pendant 1 seconde. Comme le lait pasteurisé, le lait thermisé est un lait frais qui ne se conserve que peu de temps (15 jours).
LA MICROFILTRATION
La microfiltration est un procédé qui permet d’éliminer les bactéries des liquides (le lait essentiellement) en les retenant dans des membranes (comme les laits pasteurisé et thermisé, c’est un lait frais).
LES DÉSINFECTANTS ET ANTISEPTIQUES
Diverses substances permettent de tuer les bactéries (ainsi que les autres micro-organismes) ou d’inhiber leur croissance : on appelle antiseptiques ceux que l’on utilise sur des tissus vivants (la peau, les muqueuses, les plaies), désinfectants ceux que l’on emploie sur les surfaces, les objets, les instruments.
Parmi les molécules à visée antiseptique et désinfectante les plus courantes, citons le phénol (acide phénique), le chlore (l'eau potable est traitée par cette substance afin que soit éliminée la grande majorité des agents pathogènes) et les dérivés chlorés (eau de Javel, solution Dakin), les dérivés iodés (Bétadine), les péroxydes (eau oxygénée), l’éosine, les composés organomercuriels (Mercurochrome), ainsi que l'alcool (50°, 70°, 90°, solutions hydro-alcooliques).
LES ANTIBIOTIQUES
Les antibiotiques permettent de lutter contre les maladies infectieuses dues à des bactéries (ils n’ont en revanche aucun effet sur celles dues à des virus, des champignons ou des parasites). Les antibiotiques naturels sont notamment produits par des moisissures (comme Penicillium, qui fabrique la pénicilline) et par des bactéries (dans les populations naturelles de bactéries, certaines sont bactéricides, ce qui leur permet d’éliminer la « concurrence » sur un milieu donné).
Les molécules antibiotiques sont de deux types : les bactéricides, qui tuent les bactéries, et les bactériostatiques, qui bloquent leur multiplication. Pour rechercher l'antibiotique spécifique d'une souche bactérienne trouvée chez un malade, un antibiogramme est réalisé dans un laboratoire d'analyses biomédicales.
10. LES BACTÉRIES ET LA BIOLOGIE MODERNE
Jusque dans les années 1950, la bactériologie est une branche de la médecine qui se consacre uniquement à l'étude des bactéries pathogènes. Lorsqu'elle devient une branche de la microbiologie, discipline qui s'intéresse à tous les micro-organismes, les bactéries sont étudiées sous d’autres aspects (leur écologie par exemple). Elles sont aussi devenues des matériaux d'étude de la génétique moléculaire (sur la structure et les fonctions de l'ADN) et des mécanismes élémentaires communs à toutes les cellules (comme certains métabolismes, les modes de régulation cellulaire et la synthèse des protéines). Ces études ont mis en évidence de nombreuses ressemblances entre les bactéries et les cellules d'organismes supérieurs, notamment le mode de fabrication des enzymes et les voies métaboliques.
En tant que matériel d'étude, les bactéries présentent de nombreux avantages par rapport à d'autres cellules : elles possèdent une structure relativement simple, font partie d'une population cellulaire homogène (toutes les cellules descendant d’un même ascendant sont identiques – ce sont des clones), se développent extrêmement vite, et des milliards de cellules peuvent être cultivées et sélectionnées facilement afin de créer des hybridations ou des mutations. Les mutations obtenues ont permis d'identifier le rôle de divers gènes et protéines, et de déterminer les causes de la résistance bactérienne aux antibiotiques.
MODIFICATION DU GÉNOME BACTÉRIEN
Outre les phénomènes de conjugaison (transfert d'ADN d'une cellule « mâle » dans une cellule « femelle »), de transformation (les bactéries sont capables de « capter » de l'ADN présent dans leur environnement) et de mutation, les bactéries peuvent voir leur information génétique modifiée par transduction. Lors de l'infection d'une bactérie par un virus bactériophage, l'ADN de ce dernier entre dans la cellule hôte. Le bactériophage se multiplie, puis la cellule bactérienne éclate et libère les nouveaux virus. Parmi ces derniers, certains ont incorporé un fragment d'ADN de la bactérie : en se fixant sur d'autres bactéries et en y injectant à leur tour leur ADN – contenant le fragment bactérien –, ils permettent la transduction des gènes d'une bactérie à une autre. Enfin, certains bactériophages « défectueux » n'entraînent pas la destruction de la cellule hôte (lysogénie) : de nouvelles bactéries peuvent être infectées sans être détruites, mais le transfert de gènes a bien eu lieu.
10.2. UTILISATION DES PLASMIDES BACTÉRIENS
De nombreuses bactéries contiennent des plasmides, minuscules morceaux d'ADN extra-chromosomique qui portent généralement des gènes bactériens. Le plasmide peut, dans certains cas, s'intégrer au « chromosome » bactérien. Certains plasmides portent des gènes codants pour quelques caractères de la bactérie donneuse, d'autres sont responsables de la synthèse de toxines, de la fabrication d'enzymes augmentant le métabolisme cellulaire, ou confèrent une résistance accrue à des antibiotiques et à des agents nuisibles : la cause de cette résistance, observée pour la première fois chez Escherichia coli, est souvent due à la consommation abusive d'antibiotiques.
Les plasmides, très utilisés par les biologistes moléculaires, servent de transporteurs de gène. Les techniques de génie génétique consistent à les isoler, à les ouvrir pour y insérer un gène, puis à les refermer. On obtient ainsi un ADN hybride dit recombiné. Le plasmide recombiné est placé dans une bactérie hôte, qu'il « infecte » à la manière d'un virus. Les gènes insérés se comportent de la même façon que le matériel génétique naturel de la cellule (réplication, transcription). On programme ainsi une bactérie pour fabriquer une protéine utile.
11. LES BACTÉRIES DANS L'INDUSTRIE
Sur le plan industriel, les bactéries jouent un rôle essentiel dans la fabrication du fromage, du yaourt et du babeurre (bactéries lactiques), du vinaigre (bactéries acétiques), de la choucroute, etc. Elles servent à la préparation d'antibiotiques (comme les streptomycines extraites de bactéries du sol), au tannage du cuir et des peaux, au séchage du tabac... Elles sont également employées dans les usines de traitement des effluents, afin de neutraliser les déchets organiques.
En l'absence de bactéries symbiotiques dans leur tube digestif, les bovins, les ovins et les caprins ne pourraient digérer les fibres dures de cellulose végétale. Cependant, les aliments dont le traitement industriel est mal adapté à la conservation sont susceptibles de renfermer des bactéries pathogènes (staphylocoques, streptocoques et salmonelles…) qui produisent des toxines et peuvent provoquer de graves maladies.
Clostridium botulinum, qui se développe au sein d'aliments fumés ou mis en boîte dans de mauvaises conditions, entraîne la formation d'une toxine qui est à l'origine du botulisme (paralysie musculaire), maladie grave, souvent mortelle.
DOCUMENT larousse.fr LIEN |
|
|
|
|
 |
|
Modifications des ARNt : les petites infidélités au code génétique |
|
|
|
|
|
Modifications des ARNt : les petites infidélités au code génétique
jeudi 8 mars 2018
Les ARN de transfert (ARNt) sont des adaptateurs entre l'ARN messager et les protéines. Des chercheurs de l'Institut de biologie intégrative de la cellule (I2BC) viennent de montrer que les modifications chimiques portées par les ARNt n'ont pas systématiquement pour fonction d'améliorer la fidélité de la traduction mais peuvent, au contraire, lui permettre d'être moins fidèle. Cette étude a été publiée le 5 mars 2018 dans la revue Proc Natl Acad Sci U S A.
Il est essentiel pour toute cellule d'assurer l'expression fidèle du message génétique stocké dans ses chromosomes. Ceci s'effectue en deux étapes, la transcription et la traduction. Cette dernière étape correspond à la lecture des ARNm, portant les codons, par les ribosomes. Ce processus fait intervenir de nombreux acteurs dont des ARN de transferts (ARNt) qui sont des adaptateurs entre l'ARNm (grâce à leurs anticodons complémentaires des codons de l’ARNm) et la protéine en cours de synthèse sur le ribosome.
L'appareil traductionnel doit faire face à deux contraintes qui semblent opposées : décoder fidèlement le code génétique mais également maintenir une flexibilité permettant l'évolution du code génétique et le décodage de codons synonymes, spécifiant le même acide aminé avec des anticodons différents. Ces ARNt sont chimiquement modifiés à de nombreuses positions ce qui modifie leurs propriétés de décodage. Ces modifications chimiques jouent donc un rôle essentiel dans l'expression génique. Il a d'ailleurs été montré que l'absence de certaines de ces modifications était associée à différentes maladies génétiques telles que le diabète de type 2 ou des malformations cardiaques (syndrome de Noonan), mais aussi à des cancers colorectaux, du sein ou de la peau.
Si on veut étudier les propriétés d'un ARNt n’établissant que 2 liaisons codon/anticodon sur les 3 possibles avec un codon (ARNt dit "proche cognat"), il faut s’affranchir de la présence de l'ARNt réellement adapté à ce codon (ARNt "cognat" qui fait 3 appariements avec le codon). Les chercheurs ont contourné ce problème en étudiant la translecture des codons stop.
Dans la grande majorité des cas, un codon stop (UAA, UAG ou UGA) provoque l'arrêt de la traduction mais il arrive tout de même qu'un ARNt puisse reconnaitre un codon non-sens, permettant au ribosome de continuer la traduction dans la même phase. En étudiant cette situation dans laquelle la compétition entre ARNt "cognat" et proche "cognat" n'existe pas, les chercheurs ont réussi à analyser le rôle de ces modifications dans l'incorporation des ARNt proches cognat. Leur travail a révélé un rôle important de ces modifications dans la stabilisation des interactions entre l'ARNt et l'ARNm. De manière très intéressante ces modifications n'ont pas systématiquement pour fonction d'améliorer la fidélité de la traduction puisque dans certains cas cette stabilisation a comme conséquence de permettre à l'ARNt de reconnaître le mauvais codon et donc d'augmenter le taux d'erreur.
Mieux comprendre le rôle de ces modifications dans la fidélité du décodage est une étape importante en biologie synthétique, puisque l'incorporation d'ARNt au niveau de codon stop est fréquemment utilisée pour insérer des acides aminés non naturels dans les protéines afin d'en modifier les propriétés biochimiques. C'est aussi une étape indispensable pour le développement des approches de médecine personnalisée par suppression traductionnelle des mutations non-sens, dans des gènes tels que le gène suppresseur de tumeur p53, le gène DMD dans la myopathie de Duchenne, ou le gène CFTR dans la mucoviscidose.

Références :
* Deciphering the reading of the genetic code by near-cognate tRNA.
Blanchet S, Cornu D, Hatin I, Grosjean H, Bertin P, Namy O.
Proc Natl Acad Sci U S A. 2018 Mar 5. pii: 201715578. doi: 10.1073/pnas.1715578115. [Epub ahead of print]
*
Contacts :
* Olivier Namy Institut de biologie intégrative de la cellule (I2BC)
CNRS UMR9198, CEA, Université Paris-Sud
Bâtiment 400
91405 Orsay Cedex
+(33) 169155051
DOCUMENT CNRS LIEN
|
|
|
|
|
 |
|
Un mécanisme inédit d’extension de la recombinaison homologue chez les bactéries |
|
|
|
|
|
Un mécanisme inédit d’extension de la recombinaison homologue chez les bactéries
22 juin 2017 RÉSULTATS SCIENTIFIQUES
Les étapes précoces de la recombinaison homologue (RH) consistent en l’invasion d’un seul brin d’ADN "donneur" dans un duplex complémentaire "receveur", générant une synapse à trois brins d’ADN communément appelée "D-loop". Les équipes de Patrice Polard au Laboratoire de microbiologie et de génétique microbiennes, et Rémi Fronzes à l’Institut européen de chimie et de biologie, dévoilent un mécanisme inédit d’extension de l’incorporation d’ADN au niveau de la D-loop de RH. Cette étude a été publiée le 31 mai 2017 dans la revue Nature Communications.
Les recombinases RecA/Rad51 sont des effecteurs centraux des étapes d’échanges de brins d’ADN de multiples voies de recombinaison homologue (RH) essentielles pour la la stabilité et l’évolution des génomes chez tous les organismes. Elles catalysent la RH sous la forme de polymères assemblés et désassemblés de manière ordonnée sur les brins d’ADN échangés, un processus régi par la fixation et l’hydrolyse d’ATP à l'interface de chaque monomère du filament. La RH débute par la polymérisation de la recombinase sur un brin d’ADN, générant un nucléofilament actif pour son appariement à une séquence d’ADN double-brin (ADNdb) homologue. Il en résulte un intermédiaire à 3 brins d’ADN, communément appelé "D-loop".
Les voies de RH se distinguent entre elles par des effecteurs secondaires, qui contrôlent ou assistent l’action de la recombinase. Singulièrement, plusieurs de ces effecteurs présentent une homologie significative de séquence avec les protéines RecA/Rad51 au niveau du site de liaison à l’ATP. Leur rôle, peu compris jusqu’à présent sur le plan du mécanisme, est déterminant pour la physiologie cellulaire. En effet, des mutations dans les 5 protéines humaines de ce type entrainent une forte susceptibilité à développer des cancers.
L’appareil de RH bactérien possède une seule protéine de ce type. Il s’agit de la protéine fortement conservée au plan évolutif RadA (aussi appelée Sms dans certaines espèces), identifiée et caractérisée génétiquement il y a une trentaine d’années chez Escherichia coli pour son rôle d’assistance à RecA dans la réparation de dommages à l’ADN du génome. Son étude biochimique a récemment montré qu’elle agit en soutien à RecA pour promouvoir l’incorporation d’ADN simple-brin (ADNsb) au niveau de la D-loop. L’homologie entre RadA et RecA a suggéré que RadA mimerait et/ou assisterait le mécanisme de migration de branche d’ADN de RecA, qui catalyse au niveau de la D-loop l’incorporation de l’ADNsb envahissant, de manière biaisée vers son extrémité 3’.
Les chercheurs ont conduit une étude de la structure et de la fonction de la protéine RadA de la bactérie pathogène de l’homme Streptococcus pneumoniae. Cette étude intégrée a révélé sa structure atomique. De manière inattendue, son domaine central apparenté à RecA a montré sa très forte paralogie avec le domaine de liaison et d’hydrolyse de l’ATP des hélicases réplicatives bactériennes de la famille DnaB. A cette découverte s’ajoute l’organisation de RadA en anneau hexamérique, un trait commun aux protéines DnaB. Ceci a guidé l’étude biochimique de RadA, qui a révélé qu’elle était une hélicase active se déplaçant comme DnaB le long de l’ADNsb de 5’ vers 3’. Une autre avancée de cette caractérisation fonctionnelle de RadA du pneumocoque a résulté de son étude in vivo visant à comprendre son rôle dans la transformation génétique, un processus de transfert latéral d’ADN conduisant à son intégration au génome par RH. L’inactivation de RadA conduit à une réduction de l’efficacité de transformation de 100 fois. A l’aide de tests de transformation particuliers, les chercheurs ont montré que le rôle de RadA est de promouvoir l’intégration d’ADNsb dans le génome sur de longues distances, dans la direction 3’ de cet ADNsb recombiné, mais aussi dans la direction 5’, à l’opposé de l’action de migration de branche catalysée par RecA. L’interaction de RadA avec RecA, également révélée dans cette étude, est nécessaire à cette action de RadA.
Cette étude aboutit à un modèle de mécanisme totalement inédit d’assistance de la RH médiée par une hélicase de type DnaB. Ce modèle, réconciliant les études biochimiques et génétiques, propose qu’un hexamère de RadA serait chargé par RecA sur chaque brin de l’ADNdb receveur et prolongerait symétriquement l’incorporation d’ADNsb donneur aux bornes de la D-loop construite par RecA. RadA émerge comme un effecteur d’extension de l’appareil de recombinaison homologue bactérien, une activité optimisant la plasticité du génome lors de la transformation génétique.
Figure : La protéine RadA, une nouvelle hélicase de type DnaB impliquée dans l’extension de la recombinaison homologue chez les bactéries.
© Rémi Fronzes
En savoir plus
* Bacterial RadA is a DnaB-type helicase interacting with RecA to promote bidirectional D-loop extension.
Marie L, Rapisarda C, Morales V, Bergé M, Perry T, Soulet AL, Gruget C, Remaut H, Fronzes R, Polard P.
Nat Commun. 2017 May 31;8:15638. doi: 10.1038/ncomms15638
DOCUMENT cnrs LIEN
|
|
|
|
|
 |
|
LA DYNAMIQUE DU GLOBE CONTRÔLE-T-ELLE L'ÉVOLUTION DES ESPÈCES ? |
|
|
|
|
|
LA DYNAMIQUE DU GLOBE CONTRÔLE-T-ELLE L'ÉVOLUTION DES ESPÈCES ?
La Terre est une planète vivante, aussi bien d'un point de vue biologique que géologique. La dynamique interne du globe est à l'origine de bouleversements gigantesques à la surface. Ainsi, la vie eut-elle à subir de nombreuses agressions provoquées par la tectonique, la séparations des continents et les éruptions volcaniques de plusieurs milliers d'années. L'existence de ses gigantesques éruptions permet de fournir une hypothèse aux extinctions de masse qui ponctuèrent l'évolution des espèces.
Texte de la 12ème conférence de l'Université de tous les savoirs réalisée le 12 janvier 2000 par Vincent Courtillot
La dynamique du globe contrôle-t-elle l’évolution des espèces ?
Il y a soixante-cinq millions d’années, les dinosaures occupaient toutes les niches
écologiques : l’air, les mers, les terres ; il y en avait des petits, des gros, des végétariens, des carnivores, ils étaient merveilleusement adaptés à ce monde de l’ère secondaire. Et un beau jour, il y a environ soixante-cinq millions d’années, ils ont disparu. Les théories proposées par les chercheurs depuis une centaine d’années pour expliquer ces disparitions sont extrêmement nombreuses et la plus populaire d’entre elles, qui a fait florès depuis 1980, veut qu’un jour (instantanément à l’échelle des temps géologiques), un essaim de comètes ou une grosse météorite soit tombé sur la Terre, cet impact envoyant dans l’atmosphère des quantités extraordinaires de poussières et d’aérosols qui auraient modifié le climat : une longue nuit, un hiver planétaire, suivis d’une période d’effet de serre encore plus longue. De ce passage froid/chaud, de nombreuses espèces ne seraient pas relevées. L’impact aurait interrompu les chaînes alimentaires et aurait fait disparaître de la surface de la Terre, non seulement la totalité des dinosaures, mais aussi de nombreuses autres espèces de plus petite taille .
Tout ce que les paléontologues reconstituent de la vie passée du globe est basé sur l’analyse des restes fossiles que l’on retrouve dans les roches. Pour une espèce donnée, rares sont les individus qui sont bien préservés ; l’enregistrement que nous avons de la vie sur Terre à travers ces fossiles est très incomplet. Toute théorie que l’on va construire en se basant sur ces observations est fonction du degré de complétude de cet enregistrement.
La pensée des évolutionnistes et des géologues a été dominée au XIXème et au début du XXème siècles par l’idéologie de l’uniformitarisme : au cours des temps géologiques, il ne se serait jamais passé d’événement fondamentalement différent de ce qui se passe aujourd’hui ; les transformations, les évolutions que l’on observe dans les roches ne seraient dues qu’à l‘extraordinaire longueur des temps géologiques. Les uniformitaristes refusent que l’on invoque une quelconque catastrophe pour expliquer les observations des géologues. Encore faut-il savoir ce que l’on entend par le terme de catastrophe.
Sur Terre, à cause de l’eau, de l’érosion, des climats, de la tectonique des plaques, la surface est sans cesse rajeunie et les impacts anciens de météorites, les cratères, ont très peu de chance d’être préservés. La Lune en revanche a enregistré l’histoire du début du système solaire ; astre inactif, elle a conservé, figé, l’état des lieux d’il y a trois à trois à quatre milliards d’années, et on y observe grand nombre de gigantesques cratères. Il n’y a aucune raison de penser qu’à cette époque la Terre n’ait pas subi d’impacts de même importance. La question est de savoir de quand datent les derniers très grands impacts.
Depuis 1980, l’hypothèse de la disparition des dinosaures par un grand impact de météorite domine la scène. De nombreuses autres hypothèses ont été formulées. L’une d’entre elles, dont j’ai été, avec d’autres collègues, l’un des auteurs, propose une catastrophe climatique, mais d’origine interne, qui trouverait sa source dans le volcanisme. Un volcanisme qui naturellement devrait avoir été beaucoup plus intense et volumineux que tout ce que l’on a observé de mémoire humaine. Imaginez une très longue fissure de plusieurs centaines de kilomètres de longueur, d’immenses fontaines de lave injectant dans l’atmosphère des poussières, des aérosols, des gaz (chlorhydrique, carbonique, sulfureux) qui ont la possibilité de modifier durablement le climat. Nous savons, depuis une quinzaine d’années environ,
1
depuis l’éruption d’El-Chichon, et plus récemment du Pinatubo, que le soufre injecté par un volcan dans l’atmosphère peut être responsable d’une évolution climatique significative. La température moyenne de l’hémisphère nord a ainsi chuté de façon mesurable pendant quelques années à la suite de l’éruption du Pinatubo, de quelques fractions de degrés Celsius, ce qui, à l’échelle de la température moyenne d’un hémisphère, est loin d’être négligeable. Ce n’est pas pour autant que dans les 15 dernières années, les espèces se soient éteintes en
masse ! Si le volcanisme doit expliquer l’extinction des espèces, c’est à une autre échelle qu’il a dû se manifester : encore faut-il le démontrer.
Qu’il faille invoquer un impact de météorite, qui ne dure qu’une fraction de seconde, ou une éruption volcanique qui s’étagerait sur quelques dizaines à quelques centaines de milliers d’années, on a là des événements très brefs en regard des temps géologiques, qui se chiffrent, eux, en millions, en dizaines de millions, voire en milliards d’années.
Il faut noter que quelques scientifiques ont fait l’hypothèse qu’il ne s’était en fait rien passé de brutal au moment de la disparition des dinosaures ; la mauvaise qualité de l’enregistrement de ces événements par les fossiles donnerait cette impression de brutalité, mais en fait, les choses se seraient passées de façon calme et régulière, sur des dizaines de millions d’années : on constate, il y a 65 millions d’années, , un vaste mouvement de régression et de retour des mers étagé sur une quinzaine de millions d’années, qui a entraîné un vaste changement de la géographie du monde.
Pour faire justice à toutes les théories existantes, une autre école pense que les extinctions ont certes été rapides, mais que c’est la dynamique interne des relations entre les espèces qui aurait conduit à une disparition en masse d’espèces. Des relations non linéaires entre les paramètres d’un système dynamique peuvent on le sait conduire à des évolutions extrêmement brutales : c’est la théorie du chaos déterministe.
A côté de ces quatre familles de théories sur la disparition des dinosaures, il en existe bien une centaine qui ont été proposées depuis un siècle. On a ainsi suggéré que leur régime alimentaire ayant changé, ils pondaient des œufs dont la coquille était fragile et qu’ils les écrasaient quand ils les couvaient...
Des données rassemblées depuis vingt ans par les géologues, les géophysiciens, les géochimistes, des spécialistes de plus d’une vingtaine de spécialités et de sous-spécialités différentes ont renouvelé l’approche de ce problème. La figure 1 montre un affleurement de calcaires au nord de la ville de Gubbio, en Ombrie, en Italie. Les calcaires en bas à droite, gris-bleu, se sont déposés dans un milieu semi-tropical à quelques centaines de mètres de fond, dans une mer assez chaude. Quand on en observe un petit morceau au microscope, on trouve des fossiles d’animaux petits et nombreux, des foraminifères. Ces animaux caractérisent l’âge des couches dans lesquelles ils sont enfermés, le Crétacé, la dernière partie de l’ère secondaire. En bas à droite de la séquence, nous sommes aux environs de moins soixante-six millions d’années. En biais au milieu de la photographie, une petite couche de deux ou trois centimètres d’épaisseur, marron foncé, faite d’argile sombre, sépare les bancs calcaires clairs de bancs calcaires plus rosâtres ; manifestement le contenu en oxyde de fer y est différent. Ce sont des calcaires qui témoignent à peu près du même milieu de dépôt ; lorsqu’on regarde au microscope une lame mince de cette roche, on s’aperçoit que, dans les premiers centimètres, elle ne contient plus de fossiles. On a l’impression que le monde s’est vidé. Puis, quand on remonte de quelques centimètres vers le haut, on observe des foraminifères pour la plupart assez différents des espèces que l’on trouvait en dessous : plus
2
petites, moins fines et moins décorées, ces premières espèces marines datent du début de l’ère tertiaire, il y a moins 65 millions d’années : on a traversé la fameuse limite entre ère secondaire et ère tertiaire, la limite Crétacé-Tertiaire. Depuis une vingtaine d’années les chercheurs se demandent ce qui a bien pu se passer. Quelle est la durée, la portion de mémoire de la Terre renfermée dans ce centimètre et demi d’argile noirâtre ? Un certain nombre de chercheurs américains et italiens, en particulier Walter Alvarez, ont prélevé des échantillons de ces argiles et de ces calcaires de part et d’autre de l’argile et ont analysé leur composition chimique. Surprise ! L’argile est très enrichie en iridium, un métal très rare dans la croûte terrestre. mais relativement abondant dans certains types de météorites : une telle météorite se serait vaporisée au moment de l’impact et ses produits se seraient redéposés à la surface du globe entraînant partout cette concentration anormale d’iridium. Nous sommes en 1980, l’hypothèse de la météorite est née.
Dans les années qui suivirent, les chercheurs se précipitèrent sur les coupes de la limite Crétacé-Tertiaire, partout là où elles affleuraient. La figure 2 montre ainsi un objet trouvé dans l’une de ces coupes, un tout petit grain de quartz, de un millimètre de diamètre, regardé à travers un microscope, en lumière polarisée analysée. Ce grain est traversé de familles de petits traits noirs, parallèles les uns aux autres, qui forment deux familles avec des angles très caractéristiques. Les spécialistes sont capables, en orientant ce cristal, de dire exactement à quel plan cristallin correspondent ses défauts. On ne peut produire ce type de structure qu’en faisant passer à travers un cristal de quartz une onde de choc phénoménale. Cette onde de choc désorganise le réseau cristallin et laisse derrière elle ces dislocations, ces limites entre domaines cristallographiques différents. Les grès à proximité de l’impact de la météorite de Canon Diablo en Arizona, ou les échantillons de roches provenant des sites d’explosion atomique présentent les mêmes structures. C’est un argument très fort en faveur de la météorite. Ces grains de quartz choqués ne se trouvent que dans la couche d’argile riche en iridium, mais ni au-dessus ni au-dessous.
3
4
Enfin, on a découvert la présence d’un énorme impact de météorite dans le Yucatan (au Mexique), en utilisant des mesures indirectes faites en déplaçant à la surface du sol un gravimètre (qui mesure la pesanteur). Au début des années 1970, les pétroliers ont trouvé au fond de forages effectués dans cette même région des roches qui pourraient être des restes de croûte fondue par la chaleur dégagée au moment de l’impact. Ces échantillons ont exactement soixante-cinq millions d’années, c’est-à-dire l’âge de la limite Crétacé-Tertiaire. Le cratère de Chicxulub semble bien correspondre au point d’impact de la météorite d’Alvarez.
L’iridium, les quartz choqués, la trace de l’impact au Mexique, un énorme impact qui a à peu près la bonne taille (pour une météorite qui devait faire dix kilomètres de diamètre à peu près). Le scénario en faveur de l’impact de l’astéroïde, développé entre 1980 et 1990, doit aujourd’hui être accepté.
Au début des années 1980, je me trouvais, avec mon équipe, à ramasser des cailloux quelque part entre le Tibet et l’Inde. Nous mesurions la dérive des continents. Nous avons ainsi décidé d’étudier une énorme formation volcanique, pas très loin de Bombay. On appelle cette formation géologique "les trapps du Deccan" : deux milles mètres d’épaisseur de lave affleurant sur cinq cent milles kilomètres carrés de surface. C’est donc un objet de plus d’un million de kilomètres cubes de laves empilées couche après couche, dont certaines font cent mètres d’épaisseur. On n’a jamais vu de mémoire d’homme d’éruption de cette dimension. Le travail que nous avons mené a consisté à essayer de caractériser ces roches, de les dater, en utilisant diverses techniques.
Nous avons rapporté au laboratoire des échantillons de ces basaltes du Deccan, et nous en avons mesuré l’aimantation. La plupart des roches naturelles renferment une très petite quantité d’oxydes de fer magnétiques, en général de la magnétite ou l’hématite. Nous sommes capables de mesurer la direction de cette aimantation, qui a été figée au moment où la roche s’est formée. Nous obtenons ainsi une photographie de la direction du champ magnétique terrestre ancien. Les roches naturelles se comportent donc, en gros, comme des boussoles qui ont gardé la mémoire de la direction du champ magnétique terrestre, à la fois dans le plan horizontal et dans le plan vertical, parfois depuis des centaines de millions d’années.
Nous avons par ailleurs mis en oeuvre des techniques de datation qui utilisent la décroissance naturelle des isotopes radioactifs, dont la plus connue est la méthode du carbone 14. Il existe d’autres couples d’atomes exploitables, le potassium et l’argon, le rubidium et le strontium, l’uranium, le thorium et le plomb. La géochronologie permet ainsi de dater les roches très loin dans le passé, jusqu’à l’origine du système solaire, pour peu qu’elles contiennent une quantité suffisante de ces isotopes. En utilisant l’une de ces méthodes, la méthode des isotopes de l’argon 39 et 40, nous avons montré que, du bas au haut de la falaise, les laves indiennes se sont mises en place en très peu de temps, il y a 65 à 66 millions d’années. Nous sommes capables de dire, grâce au magnétisme que cette durée n’a sans doute pas en fait excédé un demi million d’années.
Aucune des techniques que je viens de décrire ne permet à elle seule d’apporter la réponse au problème. Le magnétisme dit : « très court ». La méthode argon-argon, dit : « vers soixante- cinq millions d’années », mais même avec ces deux informations plusieurs scénarios restent envisageables. Nous avons heureusement retrouvé, « sandwichés » entre les coulées de lave, des sédiments accumulés dans un lac qui avait dû se mettre en place pendant une accalmie des éruptions. Dans ces sédiments, de tout petits restes de fossiles témoins de la toute dernière époque de l’ère secondaire. Avec l’ensemble des résultats de la géochronologie, du paléomagnétisme et de la paléontologie, il ne reste plus qu’un seul scénario possible : les gigantesques éruptions du Deccan datent bien précisément de la fameuse limite entre les ères secondaire et tertiaire.
La courbe de la figure 3 montre l’évolution dans le temps du nombre d’espèces marines fossiles découvertes par les paléontologues. On y voit la dernière et célèbre grande extinction qui, il y a soixante-cinq millions d’années, marque cette limite entre ère secondaire (ou Mésozoïque) et ère tertiaire (ou Cénozoïque). Le nombre des espèces, la diversité de la Vie sur Terre, a énormément augmenté au cours des temps géologiques, mais pas de manière uniforme. A l’ère primaire (ou Paléozoïque), après un début foudroyant (« l’explosion cambrienne »), la diversité se fixe à une valeur relativement constante, pendant des centaines de millions d’années. Et puis, il y a quelque deux cent cinquante millions d’années, s’est produite une énorme extinction en masse d’espèces. Puis la Vie a repris, a connu quelques rechutes, a repris à nouveau. Le dernier grand accident, c’est la fameuse limite Crétacé- Tertiaire.
5
6
Lors d’une pareille catastrophe, non seulement des espèces disparaissent entièrement, c’est-à- dire que tous les individus de ces espèces meurent, mais les espèces qui survivent peuvent perdre de très nombreux individus. A la limite entre les ères primaire et secondaire, il y a deux cent cinquante millions d’années, 99 % au moins de tous les individus de toutes les
espèces qui vivaient sur Terre ont disparu. C’est à peine imaginable, en termes de disparition de biomasse et en termes de catastrophe planétaire.
Retrouvons-nous pour les autres catastrophes, et en particulier, pour la grande d’il y a deux cent cinquante millions d’années, les mêmes scénarii que pour la crise Crétacé-Tertiaire ? Retrouvons-nous des traces d’impact d’astéroïde, des volcans, de grandes régressions marines ?
À travers le monde entier, plusieurs équipes se sont attachées non seulement à regarder, plus en détail, la période de la disparition des dinosaures, mais aussi toutes les autres extinctions. En même temps, les géophysiciens se sont intéressés à chercher s’il y avait d’autres endroits que l’Inde où l’on observait ces épanchements volcaniques extraordinaires. Il y a en fait une dizaine de grands « pâtés » volcaniques qui font au moins 1 million de km3 en volume, répartis à la surface de la Terre. Pour chacun d’entre eux, les chercheurs se sont livrés aux mêmes analyses que nous avions faites en Inde ; le résultat est que la quasi-totalité des formations volcaniques coïncide avec la quasi-totalité des grandes extinctions. En particulier, la grande catastrophe d’il y a deux cent cinquante millions d’années, à la fin du primaire, correspond à une énorme formation volcanique, les «trapps de Sibérie », bien connue des géologues et des économistes, parce que l’on y trouve des richesses minérales considérables, d’ailleurs liées au volcanisme.
À la question posée dans le titre de cette contribution, « La dynamique du globe contrôle-t- elle l’évolution des espèces ? », j’ai surtout tenté de répondre en parlant de l’expression du volcanisme à la surface de la Terre. Le travail du géologue et du géophysicien, c’est d’essayer de comprendre ce qui est à l’origine de ces énormes objets que sont les grandes trapps. Que s’est-il passé à l’intérieur de la Terre, sous la croûte, dans le manteau terrestre, qui a conduit à de pareils événements ? La dernière fois que s’est produite pareille monstruosité à la surface de la Terre, c’était il y a trente millions d’années. Le volcanisme correspondant forme le haut plateau éthiopien. Ce plateau volcanique, sur lequel est construit Adis Abeba, à deux mille mètres d’altitude (et dont on retrouve un fragment détaché au sud de l’Arabie, au Yémen) est un énorme volcan, formé il y a trente millions d’années, non pas au moment d’une grande disparition d’espèces, mais au moment d’une des principales crises climatiques de l’ère tertiaire. Cela correspond, en particulier, à la véritable apparition des glaciations dans l’Antarctique. Il semble qu’il y ait une relation entre le volcanisme des « trapps d’Ethiopie » et l’établissement de ce régime froid, glaciaire particulier, dans lequel nous sommes encore (même si ce moment de notre histoire est plutôt une confortable phase interglaciaire qu’une phase glaciaire à proprement parler).
Peu après la mise en place des « trapps d’Ethiopie », une déchirure est venue les traverser. Il y a donc manifestement une relation entre l’arrivée de ces bulles magmatiques à la surface et les grands moments où se déchirent les continents à la surface du globe, où s’ouvrent les bassins océaniques. Ainsi, la naissance des trois grands bassins (nord, central et sud) de l’océan Atlantique correspond-elle à l’apparition de trois points chauds et à la mise en place concomitante de trois grands trapps (Groëland-Nord des îles anglo-irlandaises, côtes est- américaine et marocaine, bassin du Parana en Amérique du Sud et d’Etendeka en Afrique).
Géophysicien, j’applique les méthodes de la physique à l’étude de la Terre pour tenter d’en comprendre la dynamique interne. Je voudrais donc vous entraîner dans un voyage difficile à imaginer : produire des images réalistes de l’intérieur de la Terre, où règnent des températures élevées, des densités fortes, une obscurité totale, n’est pas facile. D’ailleurs, les films qui ont tenté d’évoquer un voyage à l’intérieur de la Terre sont la plupart du temps assez décevants.
7
Nous allons cependant par la pensée nous enfoncer jusqu’à six mille quatre cent kilomètres sous le sol, jusqu’au centre de la terre.
Le champ magnétique oriente les boussoles à la surface de la Terre. Une petite masselotte empêche l’aiguille de la boussole de piquer du nez : le champ magnétique terrestre tend en effet non seulement à l’orienter vers le nord, mais aussi à la faire plonger – à Paris par exemple de 64° en dessous de l’horizontale. Or il existe une relation mathématique simple entre le plongement du champ magnétique et la latitude où l’on se trouve. C’est cette propriété qui permet de mesurer la dérive des continents. Quand le champ fossilisé par une roche provenant d’Inde est typique de ce qui se passe à 30° de latitude sud, alors qu’aujourd’hui cette roche est à 30° de latitude nord, je déduis que le sous-continent a parcouru 60° de latitude, c’est-à-dire près de sept mille kilomètres de dérive du Sud vers le Nord. Voilà comment on utilise l’aimantation fossilisée dans les roches.
Au milieu des océans arrive en permanence, par les déchirures que l’on appelle les dorsales, de la lave qui se refroidit et qui elle aussi fige la direction du champ magnétique terrestre. Si on déplace au fond des océans un magnétomètre, celui-ci révèle des alternances magnétiques, dans un sens et dans l’autre, qui témoignent que le champ magnétique de la Terre n’a pas toujours pointé vers le Nord. Le champ magnétique de la Terre s’est inversé des centaines de fois au cours de l’histoire de la Terre. La dernière fois, c’était il y a sept cent quatre-vingt milles ans. L’intensité du champ magnétique, depuis l’époque des Romains, s’est affaissée en Europe d’un facteur 2. Certains se demandent si le champ magnétique de la Terre ne va pas s’inverser dans deux milles ans. Or, c’est lui qui nous protège des rayons cosmiques. Est-ce quand le champ s’inverse que les espèces s’éteignent ?
Ces inversions successives sont peintes sur le plancher océanique, il est possible de les dater. Aujourd’hui, le champ s’inverse assez fréquemment, avec quelques inversions par million d’années. Mais, le champ ne s’est pas inversé pendant près de trente millions d’années, au cours du Crétacé.
La variation de la fréquence des inversions est très irrégulière et de longues périodes sans inversion alternent avec des périodes plus instables. Cette alternance semble se répéter au bout de deux cents millions d’années. La dernière période « immobile » a duré de moins de cent vingt à moins quatre-vingt millions d’années ; la précédente de moins trois cent vingt à moins deux cent soixante millions d’années. Il est frappant de voir que deux très gros trapps (Inde et Sibérie) et les deux plus grandes extinctions d’espèce ont suivi de peu ces périodes de grand calme magnétique. Le noyau de la Terre participerait-il au déclenchement de ces gigantesques catastrophes qui conduisent aux extinctions en masse ?
Le noyau de fer liquide de la Terre, qui fabrique le champ magnétique, a sa dynamique propre ; est-il couplé d’une certaine façon, à travers le manteau, avec la surface de la Terre ? Comment un tel couplage est-il possible?
Les sismologues, qui enregistrent en permanence les tremblements à la surface de la Terre et qui utilisent les ondes de ces tremblements de terre pour scruter, comme avec des rayons X, l’intérieur, sont capables de réaliser une tomographie du manteau. Ce manteau n’est pas homogène, comme on le croyait, mais formé de grandes masses un peu informes, plus lourdes et plus froides, qui sont sans doute des morceaux de plaques lithosphériques réinjectées à l’intérieur de la Terre. On savait depuis longtemps que ces plaques pouvaient descendre jusqu’à 700 km de profondeur ; on s’aperçoit qu’elles peuvent en fait parfois plonger jusqu’à
8
la base du manteau, s’empiler sous forme de véritables cimetières : des cimetières de plaques océaniques à 2900km sous nos pieds. Cette énorme masse froide et lourde vient se poser à la surface du noyau, dans lequel se fabrique le champ magnétique.
La Terre est un objet en train de se refroidir ; sa façon normale de se refroidir, c’est la convection d’ensemble du manteau, qu’accompagne la dérive des continents : la formation de la croûte, le flux de chaleur, les tremblements de terre, les éruptions volcaniques sont l’expression de ce refroidissement. Apparemment, ce système ne parvient pas ainsi à se débarrasser de la chaleur de manière suffisamment efficace. De temps en temps, un autre mode de convection de la matière conduit à la formation de ces énormes instabilités qui très rapidement vont emmener une part importante de matière et avec elle, une quantité importante de chaleur, jusqu’à la surface.
Le noyau essaie de se débarrasser de sa chaleur et un isolant vient l’en empêcher. Les hétérogénéités du manteau inférieur se réchauffent alors, s’allègent et peuvent de temps en temps devenir instables et remonter. Malheureusement, la sismologie ne nous permet pas encore de voir ces instabilités. La figure 4 représente une coupe de l’intérieur de la Terre. On y voit, à la base du manteau, ces instabilités formées de matériaux légers qui, peut-être, peuvent atteindre la surface, déclencher les éruptions des trapps et provoquer nos fameuses extinctions. Tout le système « Terre » (manteau, descentes de plaques froides, remontées d’instabilités chaudes, volcanisme catastrophique, évolution des espèces biologiques) formerait alors un grand ensemble couplé.
9
10
À défaut de pouvoir voir l’intérieur de la Terre, nous sommes capables, aujourd’hui, de le modéliser soit numériquement, sur les ordinateurs, soit dans des expériences analogiques en laboratoire. On mélange ainsi des fluides qui permettent de reproduire, en modèle réduit, ce qui se passe à l’intérieur de la Terre. On observe, sous certaines conditions, qu’un liquide
léger, donc instable, placé à la base d’un liquide dense donne naissance à des instabilités en forme de champignon, avec une tête volumineuse et une tige longue et mince [figure 4].
Si l’on imagine qu’une plaque, l’Inde par exemple, dérive au-dessus d’une telle instabilité, au moment où la bulle arrive en surface, elle va former des « trapps ». Mais, quand la bulle se sera vidée, la plaque qui a dérivé se trouvera au-dessus de la tige du « champignon » qui pourra continuer, comme un chalumeau, à percer sa surface, mais avec un volume et une intensité beaucoup plus faibles. C’est bien ce qu’on observe dans l’Océan Indien [figure 5] : l’Inde, les « trapps du Deccan » en noir, vieux de soixante cinq millions d’années, puis en gris des archipels d’îles qui parfois émergent, parfois sont sous marines, les îles Chagos, Laccadives, Maldives. En allant du nord vers le sud elles sont datées de soixante millions à cinquante-cinq millions d’années, puis quarante-huit, trente-cinq, sept millions d’années à l’île Maurice ; l’île de la Réunion, elle, se forme depuis deux millions d’années. Ces archipels constituent tout simplement la trace de la brûlure laissée par la queue du panache qui, en démarrant, a créé les « trapps du Deccan ». On retrouve donc, à la surface de la Terre, l’histoire d’une ascension qui vient probablement près de trois milles kilomètres de profondeur à l’intérieur du manteau. Partis des observations du terrain pour construire un modèle, nous avons tiré de ce modèle des prédictions que le retour à l’observation valide.
11
12
En quoi la connaissance du passé peut-elle servir à une meilleure compréhension des futurs possibles? On enseigne souvent aux jeunes géologues à se servir du présent pour comprendre le passé ; ce guide est utilisé depuis plus de cent cinquante ans. Mais, nous n’avons pas, pendant l’histoire de l’humanité, échantillonné toutes les possibilités de l’histoire de la Terre, sous toutes leurs formes et sous toutes leurs amplitudes. Notre espèce n’existe pas depuis assez longtemps pour que nous soyons certains d’avoir « échantillonné » (ou subi) l’ensemble des phénomènes naturels au maximum de leur intensité. Lors de la dernière grande éruption d’un trapp, il y a trente millions d’années, l’espèce humaine n’existait pas encore. Depuis trente millions d’années la Terre n’a pas connu d’événement d’ampleur semblable. Et nous ne
savons pas quand se produira le prochain, dans quelques millions ou quelques dizaines de millions d’années, bien qu’il soit presque certain. On dit d’autre part que l’espèce humaine est en train de préparer la prochaine grande catastrophe écologique, que peut-être la sixième grande extinction a commencé, que (et peut-être n’est-ce pas depuis seulement le siècle de l’industrie, mais depuis le dernier cycle glaciaire) les hommes, en chassant les grands mammifères, les ont fait disparaître, qu’aujourd’hui, ils font disparaître, de nombreuses espèces avant même qu’on ait eu le temps de les identifier, qu’ ils exploitent trop rapidement la forêt tropicale... Comment modéliser le devenir de notre planète face à ces « agressions » ? Les géologues fournissent les scenarii passés de catastrophes au cours desquelles la nature a engendré des évènements qui, peut-être, sont de la même ampleur que ce que l’homme est en train de faire subir à sa planète. Ils fournissent aussi aux climatologues des moyens de tester leurs modèles, naturellement très incertains, en s’appuyant, de façon rétroprédictive, sur des situations qui se sont réellement produites, à ces quelques moments pendant lesquels l’évolution de la Vie sur Terre a été entièrement et définitivement réorientée par les grands soubresauts des rythmes internes de la planète.
Légendes :
Figure 1 : Affleurement de calcaires au nord de la ville de Gubbio, Ombrie, Italie. Figure 2 : Quartz choqué de Frenchman Valley (Canada, Saskatchewan), microscopie électronique en transmission x 35.000 lumière polarisée analysée.
Figure 3 : Courbe de l’évolution dans le temps du nombre d’espèces marines fossiles. Figure 4 : Coupe schématique de l’intérieur de la Terre.
Figure 5 : Trapps du Deccan.
VIDEO canal U LIEN
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante |
|
|
|
|
|
|