ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

LA VIE DANS LES CONDITIONS EXTREMES

 

La vie dans des conditions extrêmes


Au cours des 30 dernières années, nous avons assisté à la découverte d'une extraordinaire diversité de microorganismes habitant des milieux que l'on croyait auparavant hostiles à la vie. Aujourd'hui, on sait que la vie microbienne s'étend sur Terre partout où l'on trouve l'eau à l'état liquide, des calottes polaires jusqu'aux sources hydrothermales sous-marines, dans les déserts, dans des lacs hypersalins ou de soude, dans des eaux acides, à l'intérieur de la croûte terrestre... On a baptisé comme « extrêmophiles » ces organismes limites du vivant, qui se développent optimalement dans des environnements où les conditions physico-chimiques sont insoutenables pour le reste des êtres vivants. Ces conditions mettent à l'épreuve les propriétés de stabilité et de fonctionnalité des macromolécules biologiques. Comment font-ils pour survivre ? Des études de biologie moléculaire montrent que ces microbes sont prodigieusement bien adaptés aux conditions extrêmes et que leurs molécules ne sauraient fonctionner dans des milieux plus doux. De là, l'intérêt biotechnologique que les extrêmophiles ont suscité. Mais surtout, la découverte des extrêmophiles et des nouvelles limites de la vie sur Terre a permis d'aborder la question de la vie extraterrestre de façon rigoureuse. Certains microorganismes de notre planète seraient parfaitement capables de vivre dans les conditions environnementales qui existent dans quelques régions d'autres planètes et satellites, ou d'y avoir existé dans le passé. L'étude des microorganismes des environnements extrêmes a ainsi ouvert des nouvelles perspectives pour aborder la question des origines de la vie et pour l'exploration de la vie dans l'univers.

CONFERENCE          CANAL  U           LIEN

DOCUMENTS   PEDAGOGIQUE :

La vie dans des conditions extrêmesAu cours des 30 dernières années, nous avons assisté à la découverte d'une extraordinaire diversité de microorganismes habitant des milieux que l'on croyait auparavant hostiles à la vie. Aujourd'hui, on sait que la vie microbienne s'étend sur Terre partout où l'on trouve l'eau à l'état liquide, des calottes polaires jusqu'aux sources hydrothermales sous-marines, dans les déserts, dans des lacs hypersalins ou de soude, dans des eaux acides, à l'intérieur de la croûte terrestre... On a baptisé comme « extrêmophiles » ces organismes limites du vivant, qui se développent optimalement dans des environnements où les conditions physico-chimiques sont insoutenables pour le reste des êtres vivants. Ces conditions mettent à l'épreuve les propriétés de stabilité et de fonctionnalité des macromolécules biologiques. Comment font-ils pour survivre ? Des études de biologie moléculaire montrent que ces microbes sont prodigieusement bien adaptés aux conditions extrêmes et que leurs molécules ne sauraient fonctionner dans des milieux plus doux. De là, l'intérêt biotechnologique que les extrêmophiles ont suscité. Mais surtout, la découverte des extrêmophiles et des nouvelles limites de la vie sur Terre a permis d'aborder la question de la vie extraterrestre de façon rigoureuse. Certains microorganismes de notre planète seraient parfaitement capables de vivre dans les conditions environnementales qui existent dans quelques régions d'autres planètes et satellites, ou d'y avoir existé dans le passé. L'étude des microorganismes des environnements extrêmes a ainsi ouvert des nouvelles perspectives pour aborder la question des origines de la vie et pour l'exploration de la vie dans l'univers.
Date de réalisation : 14/07/2002
Durée du programme : 59 minute(s) et 1 secondes
Classification Dewey : Organismes classés par différents types d'environnement (Biodiversité) , Ecologie et environnement
Catégorie : Conférences
Niveau : Tous publics / hors niveau
Disciplines : Environnement, Microbiologie, Sciences du vivant
Fiche LOM-FR : Obtenir la fiche
Langue : Français

Générique :
Producteur(s) :
UTLS - la suite Réalisateur(s) :
UTLS LA SUITE

LOPEZ-GARCIA Purificacion  Statut- Microbiologiste
- Chercheur à l'Université Pierre et Marie Curie
Parcours- Thésarde à l'Universidad Autonoma de Madrid sur l'organisation génomique des microorganismes halophiles.
- Stage postdoctoral de cinq ans sur la topologie de l'ADN chez les hyperthermophiles à l'université de Paris-Sud
- Professeur assistant à l'université d'Alicante
- Depuis 1 an, elle est chercheur associé à l'université Pierre et marie Curie et elle a récemment participé à la mission océanographique PHARE, organisée par l'Ifremer et le CNRS, pour étudier les sources hydrothermales sous-marines de la Ride Est Pacifique.
SpécialitésElle est spécialiste en biologie marine et en particulier aux microorganismes du plancton des grands fonds océaniques, en microbiologie et plus particulièrement aux microorganismes des environnements extrêmes concernant l'origine et l'évolution précoce de la vie sur terre.

Liste des documents disponibles :Le texte de la conférence du 14/07/2002

 Texte de la 433e conférence de l'Université de tous les savoirs donnée le 14 juillet 2002

Purificacion Lopez Garcia : " La vie dans les milieux extrêmes "

 L'objet de cette conférence est la vie dans des conditions extrêmes, dans des environnements où on pensait que la vie était impossible. Il y a trente ans à peine, on pensait que certains environnements étaient stériles, dépourvus de vie, comme les zones volcaniques, terrestres ou sous-marines, les grandes fosses océaniques, et même la glace des régions polaires.


Une introduction présentera les microorganismes qui sont quasi exclusivement les êtres vivants rencontrés dans ces environnements. Ces microorganismes sont appelés "extrêmophiles" - qui aiment les conditions extrêmes-. Cette introduction décrira comment on les a découverts, et comment on les étudie.

- Dans une seconde partie, je vous décrirai les différents environnements extrêmes, où se rencontrent ces organismes

- Enfin, j'aborderai le rapport entre les organismes extrêmophiles et l'exobiologie (ou astrobiologie pour les Américains). L'exobiologie est la science qui étudie les origines de la vie et la distribution de la vie, non seulement sur Terre mais dans l'univers.


I. Introduction : les organismes extrêmophiles :A. La découverte des organismes extrêmophiles

Les premiers organismes extrêmophiles isolés font partie des organismes halophiles, découverts dans un environnement qu'on croyait dépourvu de vie, d'où son nom : la mer morte. Ces organismes vivent dans des concentrations de sels très élevées (du grec halos, sel) Les chercheurs ne se sont pas beaucoup intéressés à ces organismes, jusqu'à la découverte beaucoup plus tardive, dans les années 70, du 3ème domaine du vivant, celui les Archae, auxquels ils appartiennent.


A cette même époque, en 1969, le microbiologiste Thomas Brock isole pour la première fois une bactérie thermophile, Thermus aquaticus, à partir des sources d'eau chaude du Parc national de Yellowstone aux Etats- Unis. Un peu plus tard, il isole, à partir de cette même source, un organisme encore plus thermophile,
Sulfolobus acidocaldarius, qui peut supporter des températures de 90°C, et, de plus, associées à de pH très acides, entre 1 et 5.

 La découverte des organismes thermophiles a brisé une idée très répandue depuis l'époque de Pasteur chez les biologistes (et les microbiologistes en particulier), selon laquelle les organismes meurent tous au-delà de 80°C. Or, on était cette fois en présence d'organismes vivants bien au-dessus de cette limite supposée.

La découverte des ces organismes dans des environnements particuliers a dès lors déclenché une sorte de chasse aux extrêmophiles. Après quelques années, cette chasse a abouti à la découverte d'une diversité inouïe, complètement inattendue, dans des milieux supposés hostiles à la vie.

B. Définition

Avant de poursuivre dans la description des ces organismes, je voudrais vous en donner une définition plus objective. Un organisme extrêmophile est un organisme qui vit aux limites de la vie, c'est-à-dire aux limites, pour un paramètre physico-chimique donné, au-delà desquelles la vie ne peut exister.

Si on prend l'exemple de la température, il existe des organismes qui se développent à des températures très négatives, de presque - 20°C, et d'autres à des températures de 110-115 °C.

Dans cette fenêtre de température, on classe différents organismes dans leur propre fourchette de température, celle où ils peuvent se développer. Des températures les plus basses aux plus élevées, on rencontre des organismes dits psychrophiles, puis mésophiles, thermophiles modérés, thermophiles extrêmes et enfin hyperthermophiles. Dans chacune des gammes de températures tolérées, les organismes ont une température optimale de croissance, à laquelle leur taux de croissance est maximal. En deçà et en delà de cette température optimale, leur taux de croissance diminue.

Selon notre définition d'extrêmophile, dans le cas présent, seuls les hyperthermophiles et les psychrophiles sont considérés comme de vrais extrêmophiles, car ils vivent aux limites hors desquelles la vie ne se développe pas. Une propriété intéressante des organismes extrêmophiles est que, non seulement ces organismes tolèrent des valeurs extrêmes d'un paramètre donné, mais, réciproquement, ils dépendent de ces conditions pour vivre. Ainsi, les hyperthermophiles ne peuvent pas se développer en dessous de 60-70 °C.

C. Place des microorganismes extrêmophiles dans l'évolution

La découverte des organismes extrêmophiles a été liée à la découverte des organismes de 3ème domaine du vivant, les Archae (Archaebactéries pour certains). A l'inverse : la découverte desextrêmophiles a conduit à l'identification de ce groupe, mais également à une "révolution" méthodologique et conceptuelle en microbiologie.

En raison de leur petitesse, les microorganismes sont difficiles à étudier. Chez les organismes plus grands, comme les animaux, il est facile de distinguer les espèces par la morphologie. Grâce à l'évolution de la morphologie suivie sur le registre fossile, il est possible de retracer l'histoire évolutive des animaux et de faire des arbres phylogénétiques (des arbres "généalogiques", qui expriment les relations de parenté). En revanche, la morphologie n'est pas assez informative dans le cas des microorganismes. C'est particulièrement vrai pour les organismes procaryotes, où le matériel génétique n'est pas isolé du reste de la cellule par un noyau membraneux, contrairement aux organismes eucaryotes.

Certes, on reconnaît des formes différentes chez les microorganismes procaryotes - on a des coques, des bacilles, des spiriles... etc. Néanmoins, ces types morphologiques sont en nombre restreint, alors qu'il existe des milliers d'espèces de coques, des milliers d'espèces de bacilles... Les morphologies ne permettent donc pas d'établir de relations de parenté entre les microorganismes.

Les microbiologistes s'étaient donc contentés d'étudier des microorganismes isolés dans des cultures pures, soit par des méthodes d'isolement dans des milieux liquides, soit par étalement sur des boîtes. On pouvait ainsi obtenir des cultures pures (des cultures où toutes les cellules appartiennent à une même espèce). A partir de là, on pouvait ensemencer les microorganismes de ces cultures pures dans de milieux de cultures différents pour étudier leurs propriétés physiologiques. Ainsi, on pouvait classer les microorganismes selon les capacités physiologiques de chacun. On restait cependant incapable d'établir une classification naturelle (ou phylogénie), c'est-à-dire une classification fondée sur des relations de parenté entre organismes.

Une idée révolutionne complètement la phylogénie, en 1965. Il s'agit d'une idée émise par Emile Zuckerkandl et le prix Nobel Linus Pauling, qui proposent dans un article très connu que les macromolécules biologiques accumulent l'histoire évolutive. Ces macromolécules, ce sont par exemple les protéines, l'ADN (le matériel génétique qui code l'information de la cellule) ou encore l'ARN (une sorte d'empreinte de l'ADN). En principe, parmi ces macromolécules, on pourrait en choisir une qui soit présente chez tous les organismes et en obtenir la séquence. En comparant cette séquence chez tous les organismes du monde vivant, on pourrait établir leurs relations de parenté. En effet, la similitude entre les séquences de macromolécules révèle s'ils sont plus ou moins apparentés.

C'est effectivement ce qui a été fait. On a choisi l'ARN ribosomique 16 S 18 S comme carte d'identité moléculaire des organismes. Pourquoi cet ARN ribosomique ? Cette molécule fait partie des ribosomes, qui sont les machines à synthétiser les protéines pour toute cellule. Ils sont indispensables à la vie de n'importe quelle cellule. L'ARN ribosomique, présent dans ces structures, est donc une molécule universelle. En principe, cette molécule peut être utilisée comme marqueur moléculaire des organismes : en comparant sa séquence chez différents organismes, on peut construire des arbres phylogénétiques, c'est-à-dire des arbres où on repère les relations de parenté entre organismes. La longueur des branches de ce type d'arbres indique la distance génétique (c'est-à-dire évolutive) entre ces organismes. Il existe deux représentations de ces arbres : sous forme d'échelle ou sous forme radiale.

En comparant la séquence des ARN ribosomiques de milliers d'espèces, on a ainsi pu construire un arbre universel du vivant, qui regroupe tous les organismes vivants.

Cet arbre a crée une surprise importante. On a découvert que tout un groupe d'organismes dont la morphologie ressemblait beaucoup aux bactéries classiques, se retrouvait isolé, distant à la fois des bactéries classiques (procaryotes) et des eucaryotes, qui rassemblent la plus grande diversité morphologique (plantes, champignons, animaux et microorganismes eucaryotes). Cela remettait en question la traditionnelle représentation des relations entre organismes vivants.

La découverte de cette troisième branche est très importante de deux points de vue. D'une part, du point de vue phylogénétique, pour étudier l'évolution et les origines de la vie. D'autre part, les premiers Archae isolés étaient des extrêmophiles, issus d'environnement à forte température, à forte concentration saline ou encore très acides. On sait que ces Archae sont présentes dans d'autres environnements, presque partout, mais souvent les Archae possèdent le record d'extrêmophiles connus. Quelle signification donner à la propriété de ce domaine ?

D. Les adaptations aux conditions extrêmes

Tout d'abord, les organismes extrêmophiles sont intéressants pour étudier les adaptations moléculaires qu'imposent les différentes contraintes - forte température, acidité...etc. La question est de savoir comment les molécules peuvent résister à des stress extérieurs extraordinaires.

On peut considérer que les cellules sont formées de trois grands types de macromolécules : les membranes (les lipides), les protéines, l'ADN. Des adaptations sont nécessaires à ces trois niveaux pour qu'un organisme supporte des conditions extrêmes.

Les membranes sont essentiellement constituées de lipides. Elles délimitent le contenu cellulaire, maintiennent la cellule en équilibre avec le milieu extérieur, et permettent les échanges avec l'environnement. Les facteurs environnementaux, entre autres la température, affectent la structure de lipides qui sont disposés en bicouche. Les lipides sont constitués d'une petite tête polaire ou hydrophile ("qui aime l'eau") et d'une longue chaîne hydrophobe ("qui n'aime pas l'eau"). Les têtes polaires sont tournées vers l'extérieur (au contact du milieu extra- ou intra- cellulaire aqueux), les chaînes hydrophobes à l'intérieur de la membrane. Les fortes températures augmentent la fluidité des lipides, ce qui déstabilise les membranes et provoquent des pertes d'ions, avec des conséquences néfastes pour la cellule. Parmi les adaptations rencontrées chez les organismes thermophiles, il y a, par exemple, la formation de mono-couches qui rigidifient la membrane, ce qui contrebalance l'effet délétère des fortes températures. Il existe de la même façon des adaptations des membranes pour chacun des paramètres physico-chimiques de l'environnement.

De la même manière, les protéines peuvent être adaptées aux différents stress auquel fait face l'organisme extrêmophile. Les protéines réalisent différentes fonctions dans la cellule. Or, la fonctionnalité de la protéine est fortement liée à sa forme, à sa configuration. A température élevée, les protéines peuvent développer le plus d'interactions possibles, à l'intérieur de la protéine, mais aussi avec d'autres molécules, pour maintenir leur configuration et leur stabilité. Au contraire, à basse température, les protéines sont adaptées pour augmenter leur flexibilité, par un ensemble d'ajustements.

Enfin, les acides nucléiques doivent également être protégés des agressions induites par les paramètres physico-chimiques extrêmes. En général, les organismes extrêmophiles, en particulier les hyperthermophiles, ou les organismes soumis à de fortes radiations UV, possèdent des systèmes de réparation de l'ADN très puissants.

Quel est l'intérêt de ces organismes ?

En raison de ces adaptations moléculaires très performantes, les organismes extrêmophiles sont très intéressants d'un point de vue biotechnologique, en particulier à cause de leurs systèmes enzymatiques. Les enzymes sont des protéines qui catalysent des réactions chimiques dans la cellule. Chez les organismes extrêmophiles, on les appelle extrêmozymes.

De façon logique, les enzymes sont adaptées aux conditions optimales de croissance de l'organisme dont elles font partie. Dans le cas des extrêmophiles, ces systèmes enzymatiques sont donc capables de fonctionner dans des conditions extrêmes. Cette résistance à des conditions drastiques peut présenter des intérêts pour des processus industriels particuliers - dont on verra quelques exemples.

D'un point de vue scientifique, la découverte des extrêmophiles, liée à celle des Archae, a représenté un réel bouleversement dans le domaine de l'évolution. De plus, cette découverte a permis de formuler de nouvelles hypothèses sur l'origine de la vie et, au final, du point de vue de l'exobiologie, pour de nouvelles recherches sur l'existence de formes de vie hors de la Terre.

II. Les organismes extrêmophiles et leur environnement

Les environnements extrêmes présentent deux caractéristiques importantes. D'une part, la prédominance de la vie microbienne. Dans les milieux les plus extrêmes, les plus limitantspour la vie, seuls certains microorganismes sont capables de se développer. D'autre part, dans ces environnements, la diversité diminue : au fur et à mesure qu'on s'approche des conditions limites pour la vie, on rencontre de moins en moins d'espèces.

On classe les organismes extrêmophiles selon le paramètre physico-chimique auquel ils sont adaptés dans une valeur extrême. Par exemple, pour la température, on a des organismes hyperthermophiles et psychrophiles. Pour le pH, on a des organismes qui vivent à pH bas, les alcaliphiles, ou élevé, les acidophiles. On va maintenant parcourir brièvement les environnements où vivent ces différents organismes.

Les températures extrêmes

Les hyperthermophiles sont probablement les plus populaires des extrêmophiles. Leur température optimale de croissance est supérieure à 80°C.

C'est à température élevée que la propriété selon laquelle la diversité diminue près des conditions limitantes est la mieux avérée. Ainsi, à basses températures, on rencontre toute une diversité d'organismes qui peuvent se développer et qui appartiennent aux trois domaines du vivant (archae, eucaryotes, bactéries). En revanche, les eucaryotes n'arrivent pas à vivre au-delà de 60°C. Seuls quelques champignons et quelques eucaryotes unicellulaires supportent 60°C. Au-dessus de cette température, on trouve seulement des archae et des bactéries thermophiles et hyperthermophiles. Aucune bactérie ne se développe à plus de 95 °C. Au-dessus de cette température, c'est le territoire des Archae. Seules des Archae sont capables de vivre au-delà de 100°C, jusqu'à 110-115°C.

Les environnements où se développent les thermophiles sont liés au volcanisme. Les sources chaudes du Parc National de Yellowstone aux Etats-Unis sont le premier type d'environnement où on les a isolés. On les rencontre également au niveau des solfatares de plusieurs régions volcaniques : Islande, Nouvelle Zélande, Australie, Italie etc. Un autre type d'environnement correspond aux sources hydrothermales continentales, notamment en Islande, en Italie et en Grèce. Cependant, la plupart de ces sources restent marines, en relation avec les grandes fosses dorsales océaniques. On les rencontre à de très grandes profondeurs, entre - 1500 et - 3000 mètres. Elles ont notamment été étudiées au niveau des rift médio atlantique et de l'est pacifique. On en trouve également au niveau de l'Océan Indien.

Ces sources sous-marines ont été découvertes pour la première fois en 1977 grâce à un sous-marin américain. A cette occasion, on a pu isoler les microorganismes. On rencontre parfois des colonies d'animaux - par exemple le ver géant Riftia pacifica.

Il existe deux types de sources hydrothermales :


- les fumeurs noirs, découverts deux ans plus tard, où les fluides sortent à des températures de 350-400 °C ;

- les fumeurs, diffuseurs froids, où la température est plus basse, en raison du mélange d'eau de mer froide avec les premières couches de fluides.

Les sources hydrothermales émettent des fluides très réduits, et souvent des gaz très toxiques pour nous (sulfure d'hydrogène, méthane), mais aussi beaucoup de métaux lourds provenant du lessivage des couches basaltiques. Ces gaz très toxiques s'avèrent très utiles pour le développement des communautés d'organismes qui y vivent. Ils sont en effet autotrophes c'est-à-dire capables de fabriquer leur propre matière organique à partir de matière inorganique (CO2) et obtiennent leur énergie à partir de réactions d'oxydoréduction qui font intervenir les composés réduits issus des fluides. Leur métabolisme est dit chimiolitho-autotrophe.

Ces organismes sont très importants parce qu'ils sont à la base de la chaîne trophique : ils réalisent la production primaire dans l'écosystème, qui est complètement indépendant de la lumière solaire (Dans les écosystèmes terrestres, les plantes occupent la même fonction, mais fixent le carbone inorganique en utilisant l'énergie solaire (processus de photosynthèse).

Ils peuvent ainsi nourrir les autres animaux à proximité.

C'est justement à proximité d'une cheminée du rift medio-atlantique qu'on a isolé l'organisme le plus thermophile connu jusqu'à présent Pindobus fumari, une archae qui peut vivre jusqu'à 113 °C.

Une condition indispensable pour la vie est la présence d'eau à l'état liquide. Dans ces sources hydrothermales de grande profondeur, on peut encore trouver de l'eau liquide à plus de 100°C grâce au poids de la colonne d'eau, dont la pression maintient l'eau à l'état liquide. Ces organismes sont en général anaérobies stricts c'est-à-dire que la présence d'oxygène les tue. Le fluide étant très réduit ne contient pas d'oxygène.

Comme exemple d'Archae hyperthermophiles sous-marines, je tiens à citer Pyroccocus abyssi, isolé par une équipe française de Roscoff, très connu, car il a été choisi comme modèle biologique pour ces organismes et son génome complètement séquencé. Enfin, il existe quelques exemples de bactéries hyperthermophiles, moins thermophiles que les Archae. Ainsi, T hermotaga maritana caractérisé par la présence de capsules, ou Aquifex pyrophilus.

Là où la vie se développe, les parasites de la vie apparaissent également. Les hyperthermophiles n'échappent pas à la règle. On trouve des virus capables de parasiter ces organismes - virus filamenteux ou en forme de citrons. Ils ne sont pas encore très connus. Il n'y a pas d'inquiétude à avoir en ce qui nous concerne : nous sommes trop loin dans la fourchette de température pour qu'ils nous affectent.


Les organismes hyperthermophiles sont importants au niveau de la biotechnologie. Ils peuvent être utilisés pour décontaminer des polluants ou des boues résiduelles de l'industrie, qui sont très chaudes. Certaines de leurs enzymes sont ajoutées au détergent pour la lessive à haute température. L'application probablement la plus importante concerne l'utilisation de certaines ADN polymerases pour la réaction de PCR - la Réaction en Chaîne de Polymérisation de l'ADN. Cette réaction permet d'amplifier l'ADN, c'est-à-dire qu'à partir d'une infime quantité d'ADN, on peut en produire de grande quantité, à l'identique. Cette technique a été une révolution en biologie moléculaire. Aujourd'hui, la PCR est utilisée en routine par tous les laboratoires de biologie moléculaire, mais aussi par les hôpitaux, ou la police - elle permet à partir d'un cheveu, de relever une empreinte génétique et de la comparer à celle d'un suspect.


A l'opposé de la gamme de température, se situent les organismes psychrophiles (qui aiment le froid). Ils se développent à moins de 5°C, aux alentours de 0°C. Comme pour les organismes vivant à hautes températures, le facteur limitant reste les ressources en eau liquide. On peut rencontrer de l'eau liquide à moins de 0°C : par exemple dans les eaux salées, ou sous les glaciers, où l'eau reste liquide sous l'effet de la pression. Ces organismes se rencontrent dans les grands fonds océaniques : en profondeur, la température avoisine les 2°C. On les retrouve également dans la neige de montagne ou les banquises. Ce sont par exemple des algues rouges qui forment des tâches rougeâtres. Souvent, ils se développent au niveau de petites crevasses où l'eau salée s'accumule en saumures, qui abritent ces organismes. Un des environnements les plus étudiés pour ces organismes psychrophiles est l'Antarctique, à partir des carottes de glace. Ces organismes peuvent se développer dans la glace, où ils forment des couches - couches d'algues rouges ou vertes.

D'autres microorganismes peuvent être présents : des organismes hétérotrophes, qui profitent de la fixation de matière organique par la photosynthèse, réalisée au niveau des couches supérieures. C'est au niveau du pôle sud qu'on a détecté le record d'activité microbien à basse température : à - 12°C à - 17°C.

Il faut cependant distinguer les organismes psychrotolérants qui peuvent vivre dans les mêmes environnements que les organismes psychrophiles. Par exemple, les ours sont dits psychrotolérants, car leur métabolisme interne se réalise à 37 °C (ils réalisent une homéostase de leur température interne). Ce n'est pas le cas des microorganismes psychrophiles vrais, qui supporte la température extérieure sans homéostasie.

Les milieux hyper salins

Les organismes halophiles aiment les fortes concentrations de sel, et peuvent vivre jusqu'à saturation en sel - le sel précipite. On les retrouve dans certaines mines de sel, et très souvent dans les salines d'eau de mer. D'étang en étang, la concentration en sel augmente jusqu'à atteindre la saturation. La couleur rouge des différents étangs correspond à la couleur des pigments de ces microorganismes. Ils peuvent adopter des formes parfois très surprenantes. Dans les étangs les plus salés, on peut avoir des cellules carrées et très aplaties.

Les pH extrêmes

Les organismes alcaliphiles vivent à pH alcalin, au dessus de pH 9. Ils sont capables de résister à l'eau de Javel. Très souvent, ces organismes sont associés à des milieux très salés. C'est le cas de lacs de type Natron, en Afrique du Nord, où les Egyptiens se procuraient les natrons pour embaumer leurs morts. On en retrouve également dans d'autres types de lacs, moins salés, où ils forment des stromatolites qui peuvent atteindre plusieurs mètres de haut.

Les organismes acidophiles au contraire, se rencontrent à pH très bas. Certains peuvent vivre sans problème dans l'acide sulfurique. Ils se rencontrent dans différents milieux - zones volcaniques, zones minières, rivières acides du Nord de l'Espagne. La couleur rouge est due à la présence de fer, à pH 2. L'organisme le plus acidophile connu est Picrophilus achemaï, isolé d'un solfatare au Japon. Son pH optimum est de 0,7 et il peut vivre sans problème à pH 0. Ils sont très utiles en biotechnologie, pour la lixiviation des métaux - On arrose des piles de minéraux avec de l'eau contenant ces microorganismes. Ces microorganismes se chargent de lessiver et de solubiliser les métaux présents dans les piles de minéraux - On les utilise également pour la désulfuration du charbon.

Pression

Les organismes barophiles (ou piezophiles) aiment les fortes pressions. On les trouve dans les grands fonds, autour de -11 000 mètres, comme dans la fosse des Mariannes ou dans la croûte terrestre, sous la masse du sol continental.

Sécheresse et radiations

Les organismes xérophiles supportent les forts dessèchements. On les retrouve dans le désert, connus sous le nom de « vernis du désert ». Ils peuvent vivre dans des cailloux, ce qui leur permet de se protéger, à la fois de la perte d'eau et des fortes radiations solaires.

Les organismes radiotolérants supportent les fortes radiations. Ce sont des bactéries normalement protégées contre les fortes dessiccations, ce qui implique des systèmes de réparation de l'ADN très puissants. Cela leur confère également une protection contre les radiations. On a pu par exemple isoler ces microorganismes à Tchernobyl ou dans l'Antarctique, sous le trou d'ozone.

Le sous-sol

Pour l'instant, nous avons fait un petit parcours pour différents types d'environnements extrêmes, sur Terre. Il nous manque encore un environnement très étendu : la biosphère souterraine.

La vie existe également dans la croûte terrestre : on a détecté de l'activité microbienne dans les sous-sols océaniques ou continentaux, dans des dépôts de sels, des mines profondes, des aquifères profonds et les grottes.

Les microorganismes de ces environnements occupent de petites crevasses, en densité très faible. Souvent, dans les environnements souterrains, les nutriments manquent par rapport aux besoins des organismes. Dans ces conditions, on suppose que ces organismes présentent une activité métabolique très faible et qu'ils ne se divisent qu'une fois par mois ou par an - très rarement, sans doute. En général, ces organismes sont chimiolitho-autotrophes. Ce sont des organismes qui fabriquent leur propre matière organique, en utilisant des composés inorganiques de la croûte pour produire des réactions énergétiques.

On a isolé des organismes jusqu'à 100 km de profondeur dans la croûte. Ainsi, Vasilius infernus a été isolé à une profondeur de 2, 7 km. Parfois, on n'arrive pas à isoler et/ou cultiver ces microorganismes en laboratoire. On réussit cependant à les visualiser, en utilisant des colorants spécifiques.

Apparemment, c'est la température qui limite la vie en profondeur. On parvient à détecter des traces de vie à des profondeurs où la température est compatible avec la vie, autour de 100-110 °C.

Les formes de survie

Du point de vue de la résistance à long terme et de la longévité, un aspect important est la survie dans les conditions extrêmes. Il n'est plus question ici de vie, mais de survie ou de résistance à long terme.

Quand les conditions deviennent trop défavorables, beaucoup d'organismes sont capables d'entrer en dormance, en adoptant des formes de résistance spécifiques. C'est le cas de nombreuses bactéries qui fabriquent des spores. Sous de telles formes, ils sont capables de résister très longtemps à des conditions très défavorables. Quand les conditions sont de nouveau favorables, ils se "réveillent" et peuvent se développer de nouveau.


Ainsi, on a exposé des formes de résistance de bactéries halophiles, présentes à l'intérieur de cristaux de sel, au rayonnement cosmique, pendant deux semaines. Elles y ont résisté.

Les deux meilleures adaptations pour assurer sa survie à long terme sont :

- d'une part, la dessiccation. C'est la méthode développée par les organismes halophiles, au centre de nucléation des cristaux. Ils peuvent résister ainsi pendant des années.

- d'autre part, la cryopréservation. Les microbiologistes savent que la meilleure façon de conserver des souches microbiennes consiste à les congeler à -80°C. Le froid agit de la même manière dans la nature et permet la survie des organismes. Un exemple est donné par une mousse issue du permafrost (sol gelé en permanence), datant de 40 000 ans, qu'on a pu faire pousser.


III. Le lien entre organismes extrêmophiles et exobiologieA. L'existence de vie hors Terre

La découverte des extrêmophiles a permis de s'interroger de façon beaucoup plus convaincante sur la question de l'existence de vie ailleurs que sur Terre, dans l'univers. En effet, il est certain que plusieurs types d'organismes extrêmophiles pourraient se développer dans les conditions offertes par d'autres planètes.

Dans notre système solaire, les deux planètes les plus favorables à l'étude de vie "extra terrestre" sont :

- Europa, une planète satellite de Jupiter, très froide. Elle possède une calotte de glace sous laquelle pourrait exister de l'eau à l'état liquide. La présence de liquide est un élément indispensable à la vie, telle qu'on la connaît du moins.

- Mars, la planète rouge, est le deuxième candidat. Sa surface est complètement stérile. Cependant, on pense qu'à l'intérieur pourrait se trouver de l'eau, et, comme la température augmente avec la profondeur, cette eau pourrait être liquide. La vie pourrait donc se développer à l'intérieur de la croûte. Même si la vie sur Mars n'existe pas actuellement, ce qui reste probable, les conditions régnant sur cette planète au début de son histoire étaient très semblables à celles de la Terre. Par la suite, comme Mars a moins de masse que la Terre, elle a perdu son atmosphère.

B. L'origine de la vie sur Terre


Tout d'abord, un petit rappel sur l'histoire de la vie sur Terre. Elle s'est formée il y a 4,6 milliards d'années. Les premiers organismes seraient apparus vers 3,8 - 3,9 milliards d'années. On date les premiers fossiles procaryotes à 3,5 milliards d'années. La nature de ces fossiles est aujourd'hui très controversée : on pensait qu'il s'agissait de cyanobactéries, mais il est possible qu'il s'agisse de procaryotes thermophiles - le débat reste ouvert. Les organismes eucaryotes apparaissent beaucoup plus tard. L'oxygène, absent au début la vie, apparaît il y a 2, 1 milliards d'années. Nous, les êtres humains, sommes apparus à la fin de l'échelle : il y a 2 millions d'années.

Le modèle le plus classique pour expliquer l'origine de la vie sur Terre a été développé dans les années 1920 par le chimiste russe , A.I. Oparin et l'anglais J.B.S. Haldane. Cette théorie défend une origine de la vie à basse température et hétérotrophe. Les premiers organismes vivants se seraient développés au niveau des mares à partir de molécules organiques simples formées grâce à la synthèse prébiotique, favorisée par les rayonnements UV et les décharges électriques. A partir de ces molécules organiques simples, les macromolécules se seraient formées : ARN, protéines, puis ADN. Ensuite, les premières cellules et... l'évolution de la vie.

Cependant, la découverte des hyperthermophiles, plus que tout autre extrêmophile, a ravivé le débat sur l'origine de la vie sur Terre. Leur connaissance a en effet suggéré de l'idée d'une origine de la vie chaude et autotrophe. Dans ce cadre, la vie serait apparue dans des environnements similaires aux sources hydrothermales sous-marines. Les premiers organismes vivants auraient été des chimiolitho-autotrophe - qui fabriquent leur matière organique et obtiennent leur énergie à partir de composés réduits. Cette idée d'une origine chaude et autotrophe de la vie est soutenue par trois types d'arguments :

- des arguments géologiques. La Terre était probablement plus chaude au moment où la vie est apparue. En effet, la Terre venait de s'agréger et se serait refroidie peu à peu.

- des arguments phylogénétiques : certains auteurs ont proposé une origine de la vie dans la branche des bactéries. Dans ce cas, les lignées les plus proches de la racine de la vie correspondent à des hyperthermophiles. L'ancêtre commun de tous les êtres vivant serait lui-même un hyperthermophile. Le problème est que cette position de la racine n'est reste pour l'instant qu'une hypothèse non validée.

 des arguments métaboliques. Les métabolismes rencontrés chez les hyperthermophiles représentent toute une variété de réactions d'obtention d'énergie qui font intervenir des composés qu'on trouve dans les sources hydrothermales. Le soufre et le fer sont souvent impliqués dans ces réactions. Ce constat rappelle une théorie de Günther Wächtershäuseren en 1988, selon laquelle la vie serait apparue sur des surfaces de pyrite (sulfure de fer), car le gaz carbonique de l'atmosphère aurait pu former des molécules organiques en présence de sulfure d'hydrogène et de sulfure de fer.Cependant, l'idée d'une origine chaude et autotrophe de la vie est très contestée. Certains auteurs proposent que le dernier ancêtre commun soit un organisme de type eucaryote. Or, comme les eucaryotes ne peuvent pas être hyperthermophiles, la vie serait apparue à basse température. D'autres avancent que la vie aurait effectivement pu apparaître à basse température, mais que le dernier ancêtre commun serait un hyperthermophile. En effet, seuls des hyperthermophiles auraient pu survivre aux bombardements de météorites qu'a connu la Terre au début de son histoire et qui auraient presque entièrement stérilisé la Terre, sauf, justement, les sources hydrothermales sous-marines.

Cependant, hormis les hyperthermophiles, d'autres extrêmophiles dans d'autres environnements sont importants pour la recherche en exobiologie :

- ceux des environnements froids (zones glaciaires, permafrost) et les psychrophiles, en raison d'une possibilité de vie sur Europa.

- ceux des milieux hyper salés, notamment les évaporites, roches obtenues par évaporation, qui préservent très bien les traces de vie passée. On a détecté sur Mars des structures qui ressemblent à ces roches. Si la vie a existé sur Mars, il est possible que ces formations en conservent des traces.

- ceux du milieu souterrain, sous la croûte terrestre, en raison des possibilités de formes de vie similaires sur Mars.

Conclusion

Les extrêmophiles nous montrent donc quelles sont, sur Terre, les limites de la vie, mais ils permettent également d'ouvrir des horizons nouveaux à la vie, dans l'Univers.

 

Glossaire


Fumeur : édifice en forme de cheminée construit sur les fonds océaniques par des fluides hydrothermaux qui précipitent des sulfures polymétalliquesSolfatare : terrain vocanique d'où sortent des fumerolles sulfureuses chaudes

Natron : carbonate de sodium hydraté naturel. Les Egyptiens utilisaient le natron pour déhydrater les corps à momifier.

Hétérotrophe : qui a besoin d'une source organiques déjà synthétisé pour assurer sa nutrition.

Autotrophe : qui peut fabriquer sa matière organique à partir d'éléments exclusivement minéraux.

Homéostasie : faculté qu'ont certains êtres vivants de maintenir ou de rétablir certaines constantes physiologiques (pression artérielle, température) quelles que soient les variations du milieu extérieur

Stromatolite : concrétion discoïde constituée par des amas de bactéries fossilisées

Cyanobactérie : procaryote capable de réaliser la photosynthèse (anciennement « algue bleu »)
 

         (  CANAL  U )

 
 
 
 

LE DIALOGUE MOLECULAIRE DES SYMBIOSES

 

Le dialogue moléculaire des symbioses


L'azote est l'un des constituants des molécules organiques. Il constitue, sous la forme d'azote moléculaire N2, environ 80% de l'atmosphère terrestre. Cependant, il représente un facteur limitant majeur de la croissance des végétaux cultivés car ceux-ci ne peuvent l'utiliser que sous des formes non gazeuses, ammoniac ou nitrates. Seules les bactéries dites fixatrices d'azote peuvent utiliser l'azote gazeux N2 et le transformer en ammoniac. Comme cette réaction est très coûteuse en énergie, certaines se sont associées en symbiose avec des organismes photosynthétiques capables de transformer l'énergie lumineuse en énergie chimique. L'homme utilise ces associations ou symbioses en agriculture : - la symbiose entre des cyanobactéries et des fougères aquatiques est utilisée comme ""engrais vert"" dans les rizières asiatiques - la symbiose entre les bactéries du sol rhizobium avec les légumineuses (pois, trèfle, soja) permet de diminuer l'apport d'engrais azotés de type nitrates dans les pays occidentaux. Les mécanismes intimes des interactions entre les deux partenaires de la symbiose rhizobium-légumineuses sont étudiés par les scientifiques. Ils espèrent pouvoir créer une symbiose entre les rhizobium et les céréales. L'apport d'engrais azotés et la pollution conséquente s'en trouveraient d'autant diminués.

CONFERENCE           CANAL  U          LIEN

 

 
 
 
 

LES ARCHITECTES DU VIVANT

 

Les architectes du vivant (1998)


Les protéines sont des macromolécules qui sont à la base du fonctionnement cellulaire des organismes vivants. Pour connaître leurs fonctions, il est indispensable de connaître leur structure car leur forme va conditionner leurs fonctions. La cristallographie par diffraction de rayons X est une technique permettant de visualiser les structures moléculaires. Pour des raisons encore inexpliquées, une molécule organique, par mise en solution puis évaporation, va former un dépôt cristallin. Les cristaux, éclairés par un faisceau de rayons X, fournissent un diagramme de diffraction qui permet de reconstituer l'image de la molécule. La source de rayons X utilisée est le rayonnement synchrotron émis par les accélérateurs de particules. Une des applications principales de l'étude des protéines est la mise au point de médicaments. En effet la connaissance de la forme de la zone active d'une molécule permet de synthétiser des inhibiteurs qui, s'insérant dans cette zone, en bloquent la fonction : il est ainsi possible d'inhiber des fonctions indispensables à la survie des virus.

Générique
Réalisateur : TERNAY Jean-François (CNRS AV) Production : CNRS AV, CSI-Science Actualités Production exécutive : CNRS AV Diffuseur : CNRS Images,
http://videotheque.cnrs.fr/

VIDEO          CANAL  U              LIEN

 

 
 
 
 

DEVELOPPEMENT ET EVOLUTION DU SYSTEME NERVEUX

 

Développement et évolution du système nerveux


Conférence du 24 janvier 2000 par Alain Prochiantz. On découvrit dans les années 1970, chez une mouche, la Drosophile, des mutations conduisant au remplacement de tout ou partie d'un organe par un autre organe. On observa, par exemple, des transformations de type antenne-patte, aile-balancier, ou aile-oeil. Ces mutations ont été dites homéotiques, l'organe d'un segment étant remplacé par l'organe homologue d'un autre segment. Les gènes homéotiques codent pour des facteurs de transcription qui, en se fixant sur des séquences promotrices, régulent l'expression d'autres gènes. Ces observations ont conduit à découvrir, dans tous les embranchements du règne animal, la présence de gènes présentant de fortes homologies de structure avec les gènes homéotiques de la Drosophile et de conclure que ces gènes régulent le développement morphologique des vertébrés. Par ailleurs, ces homologies entre gènes de vertébrés et d'arthropodes doublées de similitudes dans leur organisation chromosomique "démontrent" l'existence d'un ancêtre commun aux vertébrés et aux arthropodes qui aurait vécu il y a environ 600 millions d'années. Tout en traçant notre lien de parenté avec les arthropodes, cette conférence montre aussi à quel point nous sommes différents de ces cousins dont nous nous sommes séparés il y a environ 600 millions d'années. On voit donc apparaître ici deux stratégies d'adaptation. Chez les invertébrés, la forme adulte de l'organisme et ses comportements sont presque présents dans la structure génétique. Chez les vertébrés, les stratégies de développement, tout en définissant un plan contraignant, laissent une grande liberté aux détails de la construction cérébrale dont des aspects importants de la structure se modifient tout au long de l'existence. De ce fait, chez les vertébrés et au plus haut point chez l'homme, c'est l'histoire même des individus qui s'inscrit dans la structure cérébrale par un processus ininterrompu d'individuation.

CONFERENCE         CANAL  U        LIEN

 

DOCUMENT   PEDAGOGIQUE :

 

Développement et évolution du système nerveuxConférence du 24 janvier 2000 par Alain Prochiantz. On découvrit dans les années 1970, chez une mouche, la Drosophile, des mutations conduisant au remplacement de tout ou partie d'un organe par un autre organe. On observa, par exemple, des transformations de type antenne-patte, aile-balancier, ou aile-oeil. Ces mutations ont été dites homéotiques, l'organe d'un segment étant remplacé par l'organe homologue d'un autre segment. Les gènes homéotiques codent pour des facteurs de transcription qui, en se fixant sur des séquences promotrices, régulent l'expression d'autres gènes. Ces observations ont conduit à découvrir, dans tous les embranchements du règne animal, la présence de gènes présentant de fortes homologies de structure avec les gènes homéotiques de la Drosophile et de conclure que ces gènes régulent le développement morphologique des vertébrés. Par ailleurs, ces homologies entre gènes de vertébrés et d'arthropodes doublées de similitudes dans leur organisation chromosomique "démontrent" l'existence d'un ancêtre commun aux vertébrés et aux arthropodes qui aurait vécu il y a environ 600 millions d'années. Tout en traçant notre lien de parenté avec les arthropodes, cette conférence montre aussi à quel point nous sommes différents de ces cousins dont nous nous sommes séparés il y a environ 600 millions d'années. On voit donc apparaître ici deux stratégies d'adaptation. Chez les invertébrés, la forme adulte de l'organisme et ses comportements sont presque présents dans la structure génétique. Chez les vertébrés, les stratégies de développement, tout en définissant un plan contraignant, laissent une grande liberté aux détails de la construction cérébrale dont des aspects importants de la structure se modifient tout au long de l'existence. De ce fait, chez les vertébrés et au plus haut point chez l'homme, c'est l'histoire même des individus qui s'inscrit dans la structure cérébrale par un processus ininterrompu d'individuation.
Date de réalisation : 24/01/2000
Durée du programme : 46 minute(s) et 56 secondes
Classification Dewey : Génétique et évolution, Reproduction, développement, croissance
Catégorie : Conférences
Niveau : Tous publics / hors niveau
Disciplines : Neurologie, Biologie Animale, Sciences du vivant
Fiche LOM-FR : Obtenir la fiche
Langue : Français

Générique :
Producteur(s) :
Mission 2000 en France Réalisateur(s) :
Mission 2000 en France

PROCHIANTZ Alain  StatutDirecteur de recherche CNRS, Directeur de l'UMR 8542 du CNRS, à l'Ecole Normale Supérieure de la rue d'Ulm.
Diplômes- Ancien élève de l'Ecole Normale Supérieure de la rue d'Ulm,
- Doctorat d'Etat en Biochimie.
Parcours- 1998 : Président du Comité ATIPE Neurosciences du CNRS.
- 1995-1996 : Membre du Conseil Scientifique de l'INSERM.
- 1994-1998 : Membre du Conseil Scientifique de la Fondation pour la Recherche Médicale.
- 1991-1994 : Membre du Comité Scientifique de " Human Frontier ".
- 1990 : Directeur de l'UMR 8542 du CNRS, à l'Ecole Normale Supérieure de la rue d'Ulm.
- 1987-1995 : Membre du Comité National du CNRS, section 25.
- 1985 : Chercheur invité à l'Ecole de Médecine de NYU, New-York, USA, dans le Département de Pharmacologie, auprès du Professeur Shelanski).
- 1984-1987 : Maître de conférences à l'Ecole Polytechnique.
- 1981 : Directeur de recherche CNRS.
- 1973-1981 : Chargé de recherche CNRS.
SpécialitésNeurobiologie du développement
ParticularitésAlain Prochiantz est l'auteur de nombreux articles dans des revues spécialisées, telles que Nature, Proc. Natl. Acad. Sci., Neuron, EMBO J., J. Neurosci., Dev. Biol., Development, etc.
Il a aussi publié cinq ouvrages à la portée du grand public :
Les Stratégies de l'embryon (PUF, 1988),
La construction du cerveau (Hachette, 1989),
Claude Berrnard : la révolution physiologique (PUF, 1990),
La Biologie dans le Boudoir (Odile Jacob, 1995),
Les Anatomies de la pensée (Odile Jacob, 1997).
Machine-Esprit (Odile Jacob, 2000)

Liste des documents disponibles :Le texte de la conférence du 24/01/00 en pdf

 

Le développement et l'évolution du système nerveux.

 

 

 

 


Notre propos traitera d'embryologie, pas d'embryologie humaine bien que certains aspects du développement des autres espèces soient aussi valables pour celui de l'Homme. Nous avons, en effet, beaucoup à partager avec les autres animaux, voire avec les champignons et les plantes.


S'il fallait donner une définition de l'embryologie elle serait relativement simple. L'embryologie est l'ensemble des processus qui mènent de l'oeuf, à partir du moment où le spermatozoïde et l'ovule l'ont formé, à l'organisme adulte ou imago. Ainsi sous le terme d'embryologie, deux processus se confondent ou se superposent :


- fabriquer l'imago c'est-à-dire faire un individu dont la forme est représentative de l'espèce ;


- fabriquer un individu particulier qui diffère des autres membres de son espèce.


Ces deux processus sont inscrits l'un dans l'autre et, selon l'espèces ou l'embranchement – la place occupée dans l'histoire de l'évolution - ils n'ont pas forcément la même importance. Fondamentalement l'embryologie est question de formes et question de temps. À partir d'un oeuf se construit un individu dont la forme, l'imago, est spécifique de l'espèce. Un oeuf c'est une cellule alors qu'un individu c'est plusieurs milliards de cellules. Il y a donc une immense prolifération du nombre de cellules à partir de l'oeuf. Par ailleurs, un individu est constitué de plusieurs types de tissus, musculaire, nerveux, hépatique. Ces tissus se forment à partir de trois feuillets embryonnaires : le mésoderme donnera les muscles et les os, l'ectoderme le système nerveux et la peau, l'endoderme le tube digestif, les poumons et les glandes annexes du tube digestif comme le foie, le pancréas, la thyroïde.


Les résultats sur la première étape de formation du tissu nerveux - l'induction neurale - ont été initialement obtenus chez le crapaud Xénope mais ils sont également vrais pour le poulet, et dans les grandes lignes pour la souris et l'Homme. Au départ, à partir de la cellule initiale, une phase de prolifération mène au stade de la morula, puis de la blastula qui précède la gastrulation et l'induction neurale. La blastula est une sorte de boule creuse avec des cellules à la surface. Le système nerveux va se développer à partir de la surface extérieure dorsale de cette boule. Au cours de la gastrulation cet ectoderme dorsal est induit à devenir de l'ectoderme neural c'est-à-dire à former du système nerveux.


L'induction neurale a été découverte dans les années 1930-40 par Mangold et Spemann à la suite d'expériences dans lesquelles ils greffaient des morceaux d'embryon de Triton blanc dans un embryon de Triton noir, histoire de distinguer tissu receveur et tissu donneur. En prenant une région particulière du Triton blanc et en la greffant dans la région ventrale d'un oeuf de Triton noir, ils se sont rendus compte qu'ils dorsalisaient la région ventrale de ce dernier. Au lieu d'avoir un Triton normalement constitué ils ont obtenu un Triton à deux dos dans lequel il n'y avait pas de partie ventrale. Ils avaient induit la formation d'un deuxième système nerveux central.


À la suite de ces expériences, de nombreux chercheurs ont cherché à identifier la nature moléculaire de ces inducteurs neuraux présents dans cette petite région inductrice et mésodermique qui mise au contact de la région ventrale modifie destin embryonnaire. Cette recherche des inducteurs neuraux qui dure depuis plus de 60 ans n'est - à ce jour - toujours pas totalement aboutie. Dans la suite du développement, le triton s'allonge et à la surface dorsale se constitue une plaque neurale. Cette plaque neurale ne va donner naissance au tube neural qu'après avoir été internalisée par l'embryon.


Dans le développement du système nerveux, comme dans le développement en général, l'information positionnelle joue un rôle très important. On peut voir le système nerveux comme une plaque, une feuille sur laquelle on peut tracer un quadrillage. Une fois qu'elle s'est refermée en tube, la plaque reste quadrillée. Il y a une orientation dorso-ventrale et une orientation antéro-postérieure. Si chacun de ces carrés était défini par l'expression d'une catégorie de gènes, d'un algorithme génétique, on serait capable de définir la position de n'importe quelle cellule à partir de la connaissance des gènes qu'elle exprime. Considérer le système nerveux comme un plan et considérer ce problème de l'information positionnelle comme le problème d'un quadrillage du plan peut aider à comprendre énormément de questions qui sont posées sur la construction du système nerveux.


L'information positionnelle signifie qu'une cellule dans une région donnée, quand le tube neural s'est fermé et différencié, donnera naissance à un type de cellules bien déterminé par exemple spécifique du cortex frontal ou du bas de la moelle épinière. Pourtant, au départ, au moment où la plaque neurale se forme, les cellules sont extrêmement semblables. Beaucoup plus tard, les réseaux neuronaux seront construits. Les neurones sont amenés à envoyer un axone, un prolongement, vers une autre région pour former une synapse, un contact neuronal. La navigation du cône de croissance, la tête chercheuse du neurone, doit être précise. Le cône de croissance doit être capable, dans l'espace tridimensionnel du système nerveux, de retrouver une cible parfois très éloignée. Le quadrillage de l'information positionnelle est fondamental pour que le cône de croissance connaisse sa position et sache où il doit se diriger et quand il doit s'arrêter, c'est-à-dire pour construire un système nerveux fonctionnel.


Nous allons maintenant faire une parenthèse sur le concept d'information positionnelle et ce qu'on appelle les gènes de développement. Les gènes sont d'importance variable. Ainsi les gènes qui contrôlent la forme et la couleur des poils, la couleur des yeux, sont importants d'un point de vue esthétique mais ne sont pas fondamentaux pour ce qui est du développement de l'embryon. Par contre, il existe des classes de gènes dits de développement, qui - eux – sont essentiels pour ce qui est de la forme de l'embryon et de son développement.


La découverte de gènes dont les mutations modifiaient la forme a constitué une avancée considérable dans la compréhension de comment se construit un organisme. La grande percée a eu lieu chez la mouche du vinaigre, Drosophile, chez laquelle des généticiens du début du siècle, surtout l'école de Morgan, ont démontré que certaines mutations pouvaient transformer un organe en un autre, par exemple l'oeil en aile (mutation ophtalmoptera). Ces mutations monstrueuses suggérèrent que les gènes mutés étaient responsables du développement morphogénétique de ces petits amas de cellules embryonnaires qu'on appelle des disques imaginaux à l'origine des différents organes de la mouche. Ces gènes ont été clonés chez la mouche. Ils ont été appelés homéogènes parce que leur


mutation entraîne la transformation de l'organe d'un segment de la mouche en l'organe homologue d'un autre segment (l'aile en oeil ou l'antenne en patte, par exemple). L'existence de ces gènes lie le développement à l'évolution. En effet la compréhension de la transformation d'un organe en un autre permet de comprendre comment se sont formés des monstres au cour de l'évolution. Il est probable que beaucoup de processus de création de nouvelles espèces (les monstres qui ont réussi) sont liés à des modifications du nombre, du lieu d'expression et surtout du temps d'expression de ces gènes qui influent sur le développement morphologique des animaux et des plantes. Ces gènes homéotiques codent pour des facteurs de transcription c'est-à-dire des protéines qui restent dans le noyau des cellules et qui régulent l'expression d'autres gènes. Ce sont des gènes architectes qui contiennent le plan de la mouche et décident de la position des différents organes. Ils régulent d'autres gènes qui, eux, fabriquent réellement les organes. Ces gènes de développement sont au centre de réseaux génétiques. Une des grandes difficultés de la biologie du développement aujourd'hui est de comprendre quels sont les gènes dont l'activité est régulée par les gènes de développement, lesquels sont maintenant pratiquement tous identifiés dans le règne animal.


Chez la mouche, ces gènes de développement sont disposés le long d'un chromosome. Une chose tout à fait étonnante est que les gènes "en avant" du chromosome, en 3', sont exprimés dans les régions les plus antérieures de l'animal et que les gènes en 5', "en arrière" du chromosome, sont exprimés dans les régions les plus postérieures. D'une certaine façon la mouche est représentée sur le chromosome par la disposition des gènes de ce complexe homéotique. Quand le génome passe de la génération x à la génération x+ 1, le plan de l'animal, de l'imago, qu'il va falloir construire est transmis.


Ces facteurs de transcription, produits de ces gènes de développement - gènes du complexe HOM - se fixent à l'ADN car ils doivent réguler l'expression d'autres gènes. Ils se fixent par une petite séquence d'environ 60 acides aminés, appelée l'homéodomaine et codée par l'homéoboîte. Tous ces gènes chez la mouche ont pratiquement la même homéoboîte. Ils constituent donc une famille. Grâce à cette signature de l'homéoboîte cette même famille a été retrouvée chez la souris et chez l'Homme. Chez les vertébrés, ces gènes sont disposés non pas sur un mais sur quatre chromosomes et les gènes de ces quatre complexes HOM/Hox ont à peu près les mêmes propriétés que ceux de la mouche. Ils sont exprimés à l'avant de l'embryon quand ils sont en 3' du chromosome et à l'arrière des axes embryonnaires quand ils sont en 5' du chromosome. En analysant les gènes de mouche et de souris il a été observé que le remplacement d'un gène de mouche par un gène placé à la même position sur un des quatre chromosomes de la souris, permet de réparer la mouche. Cette complémentation marque une homologie à travers l'évolution ou encore une orthologie. À partir de la constatation de ces orthologies, on peut tirer la conclusion qu'il existe un ancêtre commun aux arthropodes et aux vertébrés. Cet ancêtre aurait vécu il y a 600 millions d'années, soit avant l'explosion du précambrien. L'évolution a alors suivi deux voies différentes l'une vers l'embranchement des arthropodes, l'autre vers celui des vertébrés. Deux duplications chromosomiques ont probablement permis la formation des quatre complexes qui sont la signature des vertébrés.


Les gènes que nous venons de décrire n'influent pas directement sur le système nerveux antérieur. Les chercheurs qui s'intéressent au cerveau ont donc utilisé une stratégie très proche en cherchant des gènes s'exprimant dans les ganglions céphaliques de la mouche. Ils ont trouvé à nouveau des gènes de la même famille, codant pour des facteurs de transcription, par exemple orthodenticle ou otd. Ayant découvert ces gènes ils ont regardé si des gènes homologues existaient dans le cerveau de la souris et en ont trouvé. Par exemple otx 1 et otx 2 qui sont assez proches de otd, s'expriment aussi dans les régions antérieures du cortex de la souris et de l'Homme et sont capables de complémenter otd. La suppression, chez la mouche, du gène otd entraîne la perte des structures céphaliques antérieures et, pour certains allèles de otd, des ocelles (trois "yeux" dorsaux). Son remplacement par otx 1 ou otx 2 de souris ou d'Homme restitue à la mouche sa morphologie normale. A l'homologie de structure et de site d'expression dans les régions antérieures du système nerveux, s'ajoute donc la


complémentation fonctionnelle. Ceci suggère très fortement que les régions antérieures existaient chez l'ancêtre commun et peut être même avant. Ainsi l'idée très développée que la céphalisation est un processus tardif de l'évolution est une idée fausse. La génétique du développement nous démontre qu'en fait la tête était là depuis le départ, au moins depuis le moment où nous nous sommes séparés de nos lointains cousins les arthropodes. Pourquoi avons-nous deux gènes otx 1 et otx 2 ? La génétique de la souris est suffisamment évoluée pour qu'on puisse retirer ou ajouter un gène à n'importe quel moment du développement. On parle de perte ou gain de fonction. La délétion de otx 2 donne une souris sans tête, c'est-à-dire sans système nerveux antérieur. C'est létal. Celle de otx 1 laisse un cerveau presque normal mais aminci du côté temporal et la souris fait des crises d'épilepsie. Surtout, elle perd le canal latéral semi-circulaire de l'oreille interne, structure qui au cours de l'évolution apparaît avec la transition des poissons sans machoires (agnathes) aux gnathostomes. Si on remplace otx 2 par otx 1 la souris commence à faire son système nerveux


mais elle ne le maintient pas. Si on remplace otx 1 par otx 2 on restitue presque toutes les fonctions de otx 1 sauf le développement du canal latéral semi-circulaire de l'oreille interne. Cela suggère qu'au départ il y avait uniquement otx 2 (orthologue de otd). Une duplication de otx 2 a rendu possible la formation de son paralogue otx 1 dont l'évolution a apporté des gains de fonction associés au passage des agnathes aux gnathostomes. L'étude des gènes de développement permet donc non seulement de comprendre le développement des organismes mais aussi l'évolution des espèces. Une nouvelle discipline est née "l'évodévo" ou développement/évolution. Il existe une très grande quantité de gènes exprimés dans les régions antéro-postérieures et dorso-ventrales du système nerveux de telle sorte que si on prend un système nerveux aplati sur lequel on trace un quadrillage, chaque région peut être définie par une combinatoire d'expression de gènes de développement. C'est en fonction de cette information positionnelle que les cellules vont donner naissance aux différents organes.


L'étape suivante dans la formation du système nerveux après la formation du tube neural à partir de la plaque neurale qui s'est refermée, c'est de le faire grossir. À partir d'une ou deux rangées de cellules il faut construire, par exemple, un cortex de 2 m2 chez Homo sapiens. Les différentes zones de cette surface ne sont pas homogènes, elles ne sont pas dévolues aux mêmes fonctions : il existe des aires olfactives, des aires associatives, des aires auditives, des aires visuelles, etc. Au cours de l'évolution la surface du cortex a augmenté et s'est régionalisée. Plis et circonvolutions permettent de tout empaqueter dans la boîte crânienne. L'augmentation générale de surface et celle ds surfaces dévolues aux fonctions spécifiques ont probablement varié à la suite de mutations de gènes de développement régulant prolifération et survie cellulaire dans des régions particulières. Par exemple, les surfaces allouées aux fonctions dites cognitives, associatives, ou permettant la maîtrise du langage, ont augmenté chez Homo sapiens plus que chez nos cousins les primates. Après la régionalisation du système nerveux, la deuxième période de ce développement permet donc la multiplication des cellules, l'organisation du cortex en six couches, la formation de toutes les structures cérébrales, la navigation axonale, la formation des synapses. Les mécanismes d'orientation d'une cellule migrante ou du cône de croissance d'un axone d'une cellule nerveuse ne sont pas encore connus même si nous savons qu'ils ont partie liée avec la lecture de l'information positionnelle, donc l'expression des gènes de développement.


Nous allons maintenant passer à des aspects un peu plus généraux. Nous avons vu tout à l'heure que nous avions au niveau chromosomique quatre représentations du corps, ce qu'on appelle des homonculus génétiques ou représentations génomiques du plan du corps. Ce plan du corps est marqué par la localisation de ces gènes de développement le long des chromosomes et par leur domaine d'expression spatio-temporel. Le cerveau est lui-même l'objet d'une construction génétique soumise à une régulation épigénétique. Par exemple, il existe dans le cortex sensoriel - sous la forme de réseaux neuronaux - une représentation du corps (donc à caractère génétique car reproduisant l'imago), mais cette représentation est déformée épigénétiquement car les régions les plus innervées sur le plan sensoriel mobilisent le plus grand nombre de neurones. La stimulation sensorielle "anime et déforme" un ensemble de neurones qui sont, pas exemple, "la main dans le cerveau".


Les réseaux neuronaux sont construits en fonction, à la fois d'une contrainte génétique, il s'agit d'un homonculus spécifique de l'espèce, et d'un environnement sensoriel. Si on coupe les afférences sensorielles, on perd le développement correct des représentations du corps au niveau du cortex. Si, chez la souris, à la naissance, on ôte les vibrisses (récepteurs sensoriels sur le museau), ils ne seront pas représentés dans le cortex, le membre sera absent. L'usage et l'influence de l'environnement sur tous les systèmes sensoriels modifient donc pour chaque individu la construction de ses représentations au niveau du système nerveux central. C'est ce qu'on appelle l'épigenèse, processus par lequel bien qu'appartenant à une même espèce, tous les individus sont différents. Le cerveau est capable d'engrammer une histoire individuelle, affective, sensorielle, une histoire de nos stimulations par le milieu. Plus nous sommes stimulés, plus nous développons des constructions épigénétiques variées. C'est vrai chez l'enfant, chez l'adolescent mais aussi chez l'adulte. En effet, une des grandes innovations des vertébrés est d'avoir gardé un système nerveux embryonnaire chez l'adulte. Ainsi, l'épigenèse se construit-elle à partir des nouveaux neurones, des arborisations neuritiques qui se


déforment, des synapses qui se font et se défont. Elle est un processus d'adaptation qui se


poursuit toute la vie. Le fait d'être du côté des arthropodes ou de celui des vertébrés a des conséquences fondamentales sur les stratégies d'adaptation. Nous partageons beaucoup avec les mouches, avec les vers et toute les études sur ces organismes sont extraordinairement importantes pour comprendre comment fonctionne et comment se construit le système nerveux des vertébrés.


Mais les logiques de nos stratégies adaptatives sont très différentes. Dans l'embranchement des arthropodes, notre grand concurrent au niveau de l'évolution, l'adaptation se fait de façon presque purement génétique. Il y a très peu d'individuation. La construction de l'individu n'est jamais très éloignée de celle de son génome. Chez les vertébrés, et encore plus chez nous parce que nous avons des systèmes de communication qui sont très riches de sens, le langage en particulier, l'adaptation ne se fait pas au niveau de la sélection de clones, elle se fait au niveau de la variabilité de l'individu, de son évolution.


L'adaptation se fait par individuation


Le système nerveux d'un individu au temps t et au temps t+δt n'est pas le même, il a évolué. L'intensité des synapses, leur nombre, le nombre de cellules, l'organisation des réseaux auront varié. Cette variation de structure biologique correspond à une évolution de l'objet, une adaptation à son milieu, une réponse à son histoire. Il y a donc de la plasticité chez l'adulte, dans certaines limites bien entendu, et cette plasticité est très certainement liée à l'expression continuée de ces même gènes de développement qui sont responsables non seulement de l'évolution, non seulement de la mise en place des grandes structures cérébrales (cortex, cervelet, moelle épinière), mais aussi de la plasticité permanente du système morphologique y compris à l'âge adulte.


La plasticité implique que de nombreuses cellules naissent, se différencient et meurent. Il existe des cellules souches dans la peau, le foie, le système hématopoïétique/immunitaire mais aussi dans le système nerveux central. Les premières ont été trouvées dans le bulbe olfactif : les interneurones du bulbe olfactif se reproduisent environ une fois par mois à partir de la zone sous-ventriculaire qui est une structure corticale située à l'avant du cerveau dont les cellules migrent pour aller envahir le bulbe. Ces cellules souches prolifèrent, migrent, se différencient comme des neurones normaux au cour du développement embryonnaire. Puis des cellules souches ont été repérées dans l'hippocampe, une structure à l'arrière du cortex qui est d'une grande importance pour la mémoire spatiale. Dans nombre de maladies neurodégénératives il y a perte de cellules au niveau de l'hippocampe. Très récemment des cellules souches ont été trouvées dans le cortex associatif du macaque. C'est une des régions la plus importante pour la mémorisation, la construction de souvenirs, pour la pensée d'une certaine façon. Le développement embryonnaire se poursuit donc sous une forme silencieuse chez l'adulte par la génération de nouvelles cellules souches qui vont migrer, se différencier et s'insérer dans des nouveaux réseaux neuronaux de la naissance à la mort. C'est une des bases de notre capacité à apprendre, de notre force d'adaptation, au niveau individuel, face aux défis qui nous sont apportés par les modifications de l'environnement physique et affectif. La question du vieillissement est donc à reposer. Pour certains, le vieillissement est une perte de fonctions à partir d'un âge idéal, une sorte de gain d'entropie catastrophique. Il peut être vu, aussi,


comme l'accumulation d'accidents du développement chez l'adulte. La biologie du développement pourrait donc nous donner des clés pour comprendre ce qu'est le vieillissement chez l'animal adulte et ce que sont de nombreuses maladies neurodégénératives comme la maladie d'Alzheimer.

 


En conclusion, revenons sur ce que ces résultats rapportés de façon extrêmement schématiques nous disent sur ce qu'on appelle "pensée". Il existe beaucoup de confusions sur le terme de "pensée". La pensée n'est pas une substance, elle n'est pas un mécanisme. Pour un biologiste, la pensée est le rapport adaptatif que tout corps vivant entretient avec son milieu. Les arthropodes, les invertébrés, ont une pensée qui est très génétique : leur rapport au milieu est fixé, très proche de leur génome. C'est une contrainte mais c'est peut-être aussi un succès parce qu'ils se développent de façon clonale. Des mutations favorables peuvent être reproduites très vite. La connaissance que nous avons des arthropodes, dans un certain sens soutiennent les thèses sociobiologiques. Si on veut bien admettre que la pensée est le rapport adaptatif à son milieu, alors, tous les êtres, animaux et plantes, pensent. Chez les vertébrés et au plus haut point chez Homo sapiens, le milieu modifie la structure. Nos gènes font que nous sommes Homo sapiens mais ils nous donnent une très grande liberté par rapport au milieu. L'évolution a sélectionné une stratégie de développement qui fait que


chaque individu peut se modifier au cours de sa vie, qu'il bénéficie d'une très grande liberté épigénétique. C'est une des bases du succès et de l'adaptation de l'espèce humaine, encore que, sans vouloir être pessimiste, après 200 000 ans d'existence à peine, nous ne savons pas vers quoi mènera ce perfectionnement extraordinaire des mécanismes épigénétiques. Enfin, nous pouvons nous adapter par individuation mais aussi par l'invention d'artefacts comme la culture qui est, avec la mémoire génétique et la mémoire individuelle, la troisième et dernière forme de mémoire à laquelle nous pouvons nous référer pour penser le vivant.

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google