|
|
|
|
 |
|
CHIMIE BACTERIENNE |
|
|
|
|
|
Paris, 9 février 2012
Une nouvelle méthode fiable et rapide pour détecter les bactéries vivantes
L'un des enjeux majeurs en matière de contrôle qualité microbiologique et de santé publique est de dénombrer et d'identifier rapidement et simultanément les bactéries vivantes présentes dans un milieu. Une méthode innovante et fiable vient d'être mise au point par une équipe du Laboratoire de chimie bactérienne de l'Institut de microbiologie de la Méditerranée (CNRS/Aix-Marseille Université) et du Laboratoire de glycochimie moléculaire et macromoléculaire de l'Institut de chimie moléculaire et des matériaux d'Orsay (CNRS/Université Paris-Sud). Ces travaux sont publiés dans Angewandte Chemie le 9 février 2012. La méthode a par ailleurs fait l'objet d'un dépôt de brevet.
La méthode mise au point permet de détecter les bactéries vivantes de type Gram négatif, auquel appartiennent des pathogènes tels que Escherichia coli, Salmonella typhimurium et Legionella pneumophila. Pour ce faire, les bactéries sont mises en contact avec du KDO, un sucre dont les bactéries se servent pour synthétiser un polysaccharide spécifique de leur membrane cellulaire. Mais ce sucre a été au préalable modifié par l'introduction d'une fonction azoture (constituée de trois atomes d'azote). Leurrées, les bactéries intègrent le sucre artificiel à leur membrane. Ensuite, grâce à une molécule fluorescente s'attachant exclusivement au groupe azoture, il devient alors possible de reconnaître et compter les bactéries Gram négatif vivantes, les seules à avoir assimilé le KDO modifié.
Les expériences menées par les chercheurs sur les bactéries de type Gram négatif valident le concept de la méthode. Pour la suite, l'utilisation d'un sucre spécifique de chaque bactérie d'intérêt devrait permettre la détection d'un très large éventail de bactéries pathogènes vivantes.
L'importance de ces résultats vient du fait qu'il n'existe pas de méthode rapide permettant simultanément de détecter et dénombrer des bactéries vivantes d'intérêt. D'autre part, les méthodes actuelles de dénombrement des bactéries vivantes ne donnent pas entière satisfaction : celles qui nécessitent une mise en culture des bactéries sont lentes (jusqu'à plusieurs semaines pour établir un dénombrement), tandis que les méthodes rapides peuvent donner de faux négatifs ou positifs. Cette nouvelle technique allie justement fiabilité et rapidité dans la détection des bactéries vivantes. Elle pourrait de ce fait rapidement devenir un outil indispensable en matière de contrôle qualité microbiologique et de santé publique.
DOCUMENT CNRS LIEN
|
|
|
|
|
 |
|
GENETIQUE |
|
|
|
|
|
Paris, 16 février 2012
Quand votre main gauche mime ce que fait votre main droite : une histoire de gène
Des chercheurs de l'Inserm, du CNRS, de l'UPMC et de l'AP-HP au sein du Centre de Recherche de l'Institut du Cerveau et de la Moelle (CRICM) de la Pitié-Salpêtrière, viennent de mettre en évidence des mutations à l'origine de la maladie des Des chercheurs de l'Inserm, du CNRS, de l'UPMC et de l'AP-HP au sein du Centre de Recherche de l'Institut du Cerveau et de la Moelle (CRICM) de la Pitié-Salpêtrière, viennent de mettre en évidence des mutations à l'origine de la maladie des mouvements en miroir congénitaux. Les personnes atteintes de cette maladie ont perdu la capacité de réaliser un mouvement différent des deux mains. Grâce au séquençage du génome de plusieurs membres d'une même famille française, le gène RAD51 a été identifié. Des travaux complémentaires menés chez la souris suggèrent qu'il s'agit d'un gène impliqué dans le croisement des voies motrices. Ce croisement est un point clé de transmission des informations cérébrales puisqu'il permet à la partie droite du cerveau de contrôler la partie gauche du corps et inversement.
Ces travaux sont publiés dans la revue The American Journal of Human Genetics.
Les mouvements en miroir congénitaux constituent une maladie rare qui se transmet de génération en génération selon un mode dit dominant. Les personnes atteintes ont perdu la capacité de réaliser un mouvement différent des deux mains : lorsqu'une main effectue un mouvement, l'autre main est « obligée » d'effectuer le même mouvement, même contre la volonté du sujet. Dans cette maladie, il est donc rigoureusement impossible d'avoir une activité motrice bi-manuelle telle que jouer du piano par exemple. Il arrive que l'on observe ces phénomènes chez les enfants, mais ils disparaissent généralement spontanément avant l'âge de 10 ans, surement grâce à la maturation des réseaux de neurones moteurs. Toutefois chez les personnes malades, les symptômes de la maladie débutent dès la petite enfance et restent inchangés tout au long de la vie.
En 2010, des chercheurs québécois ont découvert un gène responsable de la maladie grâce à l'analyse du génome des membres d'une grande famille canadienne. Des mutations avaient été identifiées dans le gène DCC (Deleted in Colorectal Carcinoma). Après cette découverte, l'équipe de chercheurs et de médecins coordonnée par Emmanuel Flamand-Roze a donc cherché des mutations de ce gène chez plusieurs membres d'une famille française atteinte de la maladie des mouvements en miroir congénitaux : sans succès. « Le gène DCC était intact » explique Emmanuel Flamand-Roze. « Alors que l'on croyait toucher au but, il a donc fallut chercher une mutation dans un autre gène » ajoute-t-il.
Par une approche couplant une analyse génétique conventionnelle et une analyse en « whole exome » (une technique d'analyse génétique de nouvelle génération permettant le séquençage entier de la partie signifiante du génome) les chercheurs ont démontré que le gène RAD51 était responsable de la maladie des mouvements en miroir congénitaux dans une grande famille française et confirmé ce résultat dans une famille allemande atteinte de la même maladie.
« Le gène RAD51 était bien connu de la communauté scientifique pour son rôle potentiel dans la survenue de certains cancers et dans les phénomène de résistance aux chimiothérapies » explique Emmanuel Flamand-Roze. Nous avons donc cherché s'il pouvait avoir une fonction différente pouvant expliquer les symptômes moteurs de cette maladie.
Le système moteur se constitue chez l'homme selon une organisation croisée : le cerveau gauche commandant la motricité du côté droit et réciproquement, avec un croisement qui s'effectue au niveau du tronc cérébral. En étudiant l'expression de la protéine RAD51 au cours du développement du système moteur chez la souris, les chercheurs ont découvert que ce gène pourrait être impliqué dans le croisement des voies motrices reliant le cerveau à la moelle épinière au niveau du tronc cérébral.
Cette découverte ouvre un champ complètement nouveau d'investigation pour la connaissance du développement du système moteur et pour une meilleure compréhension des mécanismes cérébraux qui contrôlent la motricité bi-manuelle (très mal connus). Elle pourrait ainsi permettre d'apporter un éclairage sur d'autres désordres moteurs impliquant une altération de l'organisation fine du mouvement tels que la dystonie ou sur certaines maladies génétiques neuro-développementales.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
DOMESTICATION DU BLE |
|
|
|
|
|
Paris, 15 novembre 2011
Domestication du blé, quand l'évolution des gènes fait bien les choses
A l'origine même de l'agriculture, le blé est, après des millénaires, la première plante cultivée au monde et l'aliment de base du tiers de la population mondiale. Les espèces de blé cultivé, fruits d'une sélection menée par l'homme, présentent un génome* complexe qui associe deux ou trois génomes homologues. Une étude publiée par des chercheurs de l'INRA, du CEA/Genoscope et leurs collègues américains dans la revue Proceedings of the National Academy of Science du 15 novembre 2011, révèle que les différentes copies d'un gène appelé Q, élément majeur de la domestication du blé, contribuent de manière coordonnée et différenciée aux caractères de la domestication. Ces travaux constituent un cas d'école en matière de régulation et d'interaction entre copies dupliquées des gènes au sein d'un organisme qui possède plusieurs génomes.
La plupart des êtres vivants ont deux jeux de chromosomes dans leurs cellules, on les appelle diploïdes. Dans certaines conditions, par exemple suite à des croisements entre espèces, le nombre de chromosomes peut être augmenté par agrégation de plusieurs génomes, on parle alors d'espèces polyploïdes. La majorité des plantes à fleurs dont les plantes cultivées comme le blé ont une origine polyploïde. Ce mécanisme a été très important dans l'évolution, la diversification et la création de variabilité génétique.
Le blé, jamais deux sans trois… génomes
Originaires du Moyen-Orient, les différentes espèces de blé (Triticum et Aegilops) ont subi au cours des siècles des transformations qui les ont fait passer de l'état de plantes sauvages à celui d'espèces cultivées. Actuellement, deux espèces de blé sont principalement cultivées : le blé dur utilisé pour les pâtes et le blé tendre employé pour le pain. Elles ont été générées par des événements de polyploïdisation intervenus suite à des croisements entre espèces ancestrales. Le premier événement implique deux espèces diploïdes présentant 7 paires de chromosomes, Triticum urtatu (génome AA) et une espèce d'Aegilops (génome BB) ; il a eu lieu il y a environ 500 000 ans et a conduit à l'apparition de blés tétraploïdes dont le blé dur, Triticum turgidum (génome AABB, 14 paires de chromosomes). Le second événement a eu lieu au cours de la domestication, il y a environ 9000 ans, entre un blé tétraploïde cultivé et un blé diploïde (Aegilops tauschii, génome DD). Il a donné le blé tendre, Triticum aestivum, qui est hexaploïde (génome AABBDD, 21 paires de chromosomes).
Le gène Q, élément clé de la domestication du blé
Au fil du temps, l'homme a sélectionné des plantes de blé répondant mieux à ses besoins (facilitation de culture, amélioration de l'utilisation…). On a ainsi vu apparaître, lors des premières étapes de la domestication, des populations du blé qui avaient perdu la possibilité, par rapport aux plantes sauvages, de disséminer leurs graines à maturité. Ces blés présentent un épi compact dont la tige centrale ou rachis ne se désarticule pas, favorisant ainsi la récolte. Ces caractères sont contrôlés par le gène Q, un gène majeur de la domestication.
L'évolution du gène Q au service de la domestication du blé
Les chercheurs ont exploré l'organisation, le fonctionnement et l'évolution des différentes copies du gène Q porté par les chromosomes 5 des trois génomes A, D et B du blé tendre (T. aestivum) afin de comprendre leurs participations aux caractères de la domestication.
Les scientifiques ont ainsi mis en évidence que les trois copies du gène agissent ensemble, chacune contribuant aux caractères liés à la domestication de façon directe ou via des processus de régulation liés à l'environnement (on parle d'épigénétique).
Ils ont montré que l'évolution du gène Q varie selon les copies : elle se traduit par une hyperfonctionnalisation d'une copie (5A), par une pseudogénisation de la deuxième copie (5B) qui ne code plus pour une protéine active mais reste fonctionnelle et continue à contribuer aux caractères de domestication, et par une sous-fonctionnalisation de la troisième copie (5D).
L'ensemble des résultats constitue une avancée déterminante dans la compréhension des bases moléculaires et génomiques de la domestication du blé. Il révèle un des rares exemples de mécanisme d'interaction et de partage de fonction entre les copies d'un gène chez une plante polyploïde, en lien avec la morphologie et la domestication du blé.
Plus encore, alors que la domestication et la culture du blé ont été des éléments fondateurs des premières civilisations humaines dans le Croissant Fertile, ce travail apporte une pierre à l'édifice de la compréhension du développement de l'agriculture et de la sédentarisation des premières populations.
Notes :
* Le génome est l'ensemble des chromosomes, et par extension l'ensemble des gènes, portant le patrimoine génétique d'un individu.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
DEFICIENCE INTELLECTUELLE |
|
|
|
|
|
Paris, 26 août 2011
Une signature moléculaire de la déficience intellectuelle
La déficience intellectuelle (DI) est un handicap fréquent qui concerne près de 3 % de la population générale mais dont les causes sont encore peu connues. Aujourd'hui, les équipes de Laurence Colleaux de l'unité de recherche "génétique et épigénétique des maladies métaboliques, neurosensorielles et du développement” et de Jean Marc Egly de l'"Institut de génétique et de biologie moléculaire et cellulaire" ont identifié une mutation sur un gène impliqué dans la transcription de l'ADN en ARN messager, 1ère étape d'un processus complexe aboutissant à la synthèse des protéines. Cette mutation bouleverse l'expression de gènes essentiels à la plasticité cérébrale, l'ensemble des mécanismes par lesquels le cerveau modifie l'organisation de ses réseaux de neurones en fonction des expériences vécues. Selon l'étude, l'anomalie de ces gènes, dits "précoces", serait une des "signatures moléculaires" de la déficience intellectuelle. Ces résultats sont publiés dans la revue Science datée du 26 aout.
La déficience intellectuelle (DI) est définie comme un « fonctionnement intellectuel général inférieur à la moyenne, qui s'accompagne de limitations significatives du fonctionnement adaptatif». Parmi les DI, les formes dites "non syndromiques" sont caractérisées par une diminution isolée et non progressive des performances intellectuelles. Les chercheurs se sont penchés sur ces formes de déficits car les gènes responsables participent directement aux processus liés aux fonctions cognitives : mémorisation, apprentissage, comportement, etc.
Les équipes de recherche de Laurence Colleaux et Jean Marc Egly, ont identifié une mutation du gène MED23 qui est liée à une DI isolée. MED23 code une des sous-unités d'un large complexe multiprotéique : le Médiateur (MED, cf. Figure 1). Ce complexe est connu pour son rôle dans une étape clé de la régulation de l'expression des gènes : la transcription. Il permet aux facteurs de transcription spécifiques d'un gène de s'assembler pour interagir avec l'ARN polymérase, l'enzyme clé de cette étape.
Au cours de ces travaux, les chercheurs ont démontré que les cellules de patients atteints de DI présentent un défaut d'expression de certains gènes parmi lesquels les gènes "précoces" JUN et FOS. Ces derniers sont impliqués dans l'expression d'une cascade de gènes liés à diverses fonctions cellulaires, notamment au niveau du système nerveux central. Leur activation rapide et transitoire est une étape clé dans le développement et la plasticité cérébrale.
La mutation identifiée conduit à la synthèse d'une protéine MED23 modifiée devenue incapable d'interagir correctement avec les facteurs spécifiques des deux gènes considérés. Par exemple, dans le cas du gène JUN, l'assemblage permettant la transcription est défectueux suite à un mauvais contact entre la protéine MED23 mutée et le facteur TCF4 (en bleu cf. Figure 2).
"L'étude de patients DI porteurs de mutations modifiant d'autres protéines impliquées dans la transcription, suggère que cette anomalie d'expression des gènes "précoces" puisse être une "signature moléculaire" de ce trouble", explique Laurence Colleaux. Ces résultats apportent donc un nouvel argument en faveur du rôle majeur des anomalies de l'expression génique dans la recherche des causes de déficiences intellectuelles.
La déficience intellectuelle en chiffres
3 % de la population générale concernée
Entre 6 000 et 8 500 naissances avec un handicap mental par an.
Si 20 % des DI peuvent être attribuées à des facteurs environnementaux, 40 % à des causes génétiques connues, les causes de la maladie restent inconnues dans près de la moitié des cas.
DOCUMENT CNRS LIEN
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante |
|
|
|
|
|
|