ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

L'ADN : DÉCHIFFRER POUR MIEUX COMPRENDRE LE VIVANT

 

 

 

 

 

 

 

L'ADN : DÉCHIFFRER POUR MIEUX COMPRENDRE LE VIVANT

La cellule, le patrimoine génétique


La brique élémentaire de tous les êtres vivants est la cellule. Elle renferme en son sein une molécule qui porte son patrimoine génétique.

Publié le 25 janvier 2018
       

Les êtres vivants ont pu s’adapter à tous les milieux et coloniser l’ensemble des écosystèmes marins et terrestres ! Que ce soit une bactérie, un homme, un lichen ou une sauterelle, tous les organismes ont quelque chose en commun : la cellule. Autonome, elle vit, se reproduit et meurt.

AU CŒUR DE LA CELLULE

Les cellules sont les plus petites unités du vivant. Pour les voir, il suffit d’un microscope car une cellule animale mesure en moyenne 20 micromètres. Elles se classent en deux types : les procaryotes et les eucaryotes. Les premières, de simples poches de liquide contenant des biomolécules, délimitées par une membrane et ne comportant pas de noyau, sont dites “ primitives ”. Les bactéries sont les principaux représentants de cette confrérie. Les cellules eucaryotes sont plus organisées, avec différents compartiments ayant chacun un rôle à jouer, comme le noyau.


        1 - Le noyau : centre de contrôle de la cellule. Il contient le matériel génétique sur lequel est inscrit le mode d'emploi de tout organisme. Chaque cellule utilise le génome d'une façon différente. Elle a son propre mode d'emploi.

*         2 - Les lysosomes : centres de recyclage. Ce sont de petits sacs qui concentrent les substances à détruire et les enzymes nécessaires à cette destruction.

*         3 - Les ribosomes : usines de production des protéines. Ils synthétisent des protéines à partir des instructions données par le noyau.

*         4 - L'appareil de Golgi : centre de tri. Dans ces sacs empilés les uns sur les autres s'achève la préparation de protéines synthétisées dans la cellule en vue de leur exportation.

*         5 - Le cytoplasme : agora de la cellule. Délimité par la membrane plasmique, le cytoplasme est constitué d'eau et de biomolécules et contient les divers organites cellulaires (noyau, mitochondries…).

*         6 - Les mitochondries : centrales énergétiques. Elles sont le siège de la respiration cellulaire et de la production d'énergie.



L’Homme est composé de 5 000 à 30 000 milliards de cellules.


* Au sein d’un organisme, les cellules peuvent avoir des formes et des fonctions différentes mais elles contiennent toutes, dans leur noyau, les mêmes informations génétiques, le même patrimoine. Chez les eucaryotes pluricellulaires, les cellules sont réunies en tissus. Un tissu est composé de plusieurs types de cellules avec des fonctions bien distinctes, mais il y a souvent un type cellulaire prédominant remplissant la même fonction, comme les hépatocytes dans le foie.
*
* Différents tissus peuvent s’associer pour former un organe et plusieurs organes peuvent contribuer à une même grande fonction physiologique. Les cellules germinales sont fabriquées par l’appareil reproducteur. De l’union du patrimoine génétique d’un spermatozoïde et de celui d’un ovule naîtra un nouvel individu. Les cellules de l’œuf se multiplieront et se différencieront pour produire les centaines de lignées de cellules spécialisées, dites somatiques, qui constitueront la peau, le cerveau, le tube digestif… de ce nouvel individu.
*
* D’après la découverte de fossiles de stromatolithes1 dans les lagunes australiennes, la vie aurait commencé sur Terre il y a 3,5 milliards d’années. De la bactérie unicellulaire à l’Homme, composé de pas moins de 30 000 milliards de cellules, le Vivant n’a cessé d’innover !
*
1 : Stromatolithes : constructions fossiles, formées en général par des cyanobactéries (algues bleues), qui existent encore à l'heure actuelle.

Les différents types de cellules

Les différents types de cellules. © Victoria Denys/CEA


Les deux types de division

Les deux types de division. © Victoria Denys/CEA

La mitose, une division cellulaire


Nb : ce contenu existe également en version interactive à cette adresse (requiert flash).
Votre navigateur ne permet pas de lire des vidéos.
télécharger : version vidéo | version flash interactive    VOIR DANS LA MÉDIATHÈQUE     


Chez l'Homme, les cellules souches (indifférenciées) et les cellules somatiques (différenciées et spécialisées) se multiplient par mitose pour donner deux cellules identiques, dites diploïdes, contenant 23 paires de chromosomes. Les cellules germinales (cellules sexuelles ou gamètes), quant à elles, doivent subir deux divisions successives (méiose) pour donner des cellules, dites haploïdes, avec un seul exemplaire de chacun des 23 chromosomes. Lors de la fécondation, les deux gamètes fusionnent pour générer un œuf diploïde. Le mélange de 50 % du patrimoine de la mère avec 50 % du patrimoine du père est appelé brassage génétique. La reproduction sexuée augmente la biodiversité et par conséquent le potentiel adaptatif de l'espèce.  

LE CYCLE CELLULAIRE
En 24 heures, depuis sa naissance jusqu’à sa division ou sa mort, une cellule suit un cycle de 4 phases.

*         La première, notée G1, correspond à sa croissance. Pendant ce temps, plus ou moins long, la cellule exerce ses fonctions ordinaires sans produire de nouvel ADN.
*         La seconde étape, S, est celle de la synthèse de l’ADN et de la réplication chromosomique.
*         Lors de la phase G2, la cellule s’assure que la réplication s’est bien passée.
*         Puis elle déclenche la dernière phase, celle de la division cellulaire.

L'ADN
Histoire de lu vivant et de l'ADN

L’enquête a commencé au siècle des Lumières par des observations macroscopiques sur la biodiversité. Les explorateurs rapportent de nouvelles espèces que Carl Von Linné, Georges Cuvier et Georges Buffon nomment et classent selon les caractères propres à chacune (nombre de membres, bipédie,
poils, plumes…). Puis Jean-Baptiste de Lamarck invente la biologie ; il est le premier à comprendre que les espèces évoluent. Au XIXe siècle, Charles Darwin émet l’idée qu’un caractère possède une certaine variabilité au sein d’une
population et que la sélection naturelle conserve les variations les plus favorables, dans un contexte donné ou un environnement spécifique.

En 1866, dans le potager de son abbaye, le moine Gregor Mendel découvre que certains caractères sont héréditaires : c’est la naissance de la génétique.
En 1952, la scientifique Rosalind Franklin parvient à “ photographier ” une molécule d’ADN et émet l’hypothèse de sa structure en double hélice. La reprise de ces travaux par Francis Crick et James Watson ouvre la voie à la biologie moléculaire.

L'ADN, vecteur de l'hérédité
Le noyau, de forme sphérique, est l'organite le plus volumineux de la cellule. Ses 5 micromètres de diamètre permettent de l’observer en microscopie optique. Une goutte de vert de méthyl suffit à révéler son principal constituant, l’Acide DésoxyriboNucléique (ADN). C'est la molécule support du patrimoine génétique de tout être vivant. La longue chaîne d’ADN est composée d'une succession de nucléotides (contenant des bases) accrochés les uns aux autres par des liaisons phosphodiester. Les 4 bases qui composent l’alphabet du programme génétique sont A, T, G et C.


La molécule d’ADN en version 3D est un assemblage de deux chaînes hélicoïdales (ou brins) s’enroulant autour d’un axe. Cette double hélice est maintenue grâce aux liaisons hydrogène entre les bases qui se font face. Ces bases, dites complémentaires (A s’apparie avec T et C avec G) forment comme les barreaux d’une échelle. Les deux brins d’un ADN donnent donc la même information, comme une photo et son négatif.

Dans les gènes, une suite de trois lettres forme un mot, ou codon. Les mots forment des phrases ou des instructions qui sont à l’origine des caractères héréditaires. La plupart du génome reste non lisible.


Deux êtres humains qui n'ont aucun lien de famille ont 99,9 % d'ADN en commun.

LES CHROMOSOMES, SUPPORTS MATÉRIELS DES GÈNES

Caryotype d'une cellule humaine, par hybridation en fluorescence. © Steven M.Carr
Au moment de la division cellulaire, l’ADN se compacte autour de protéines et s’organise en bâtonnets visibles, les chromosomes. Chaque espèce possède un nombre constant et spécifique de chromosomes : 46 pour l’Homme, 24 pour le riz, 8 pour la mouche… Chez la bactérie, il n’y en a qu’un et il est circulaire ! Si la cellule est stoppée pendant sa division, il est possible de réaliser un caryotype, sorte d’instantané de ses chromosomes. Ceux-ci sont découpés puis classés selon une numérotation internationale. Par exemple, un caryotype sert à identifier le sexe d’un individu (chromosome 23 XX - femelle ou XY - mâle) ou à détecter certaines anomalies, comme la trisomie 21 (3 copies du chromosome 21).

Un chromosome humain débobiné mesure un mètre d’ADN ! Sur ce mètre étalon, certaines fractions sont des instructions qui commandent la synthèse de protéines ; ce sont les gènes. Unités de base de l’hérédité, ils déterminent ce que nous sommes et comment nous fonctionnons (couleur des yeux, groupe sanguin…).

LE COMPLEXE DU GÉNOME
Organisme    Nombre de chromosomes    Taille du génome en millions de bases    Nombre de gènes
Homme    46    3300     21000
Riz    24    430    37000
Mouche    8    165    13000

Un organisme complexe, comme l'Homme, a-t-il un plus gros génome et plus de gènes qu'un organisme " moins évolué " ?

C'est globalement vrai quand on compare les procaryotes (bactéries) aux eucaryotes (plantes, animaux…). Cependant, chez les eucaryotes, le paradoxe existe. L'Homme a à peine deux fois plus de gènes que la mouche et moins qu'un grain de riz ! Il n'existe pas de relation entre la complexité d'un organisme et le nombre de gènes ou la taille de son génome.

LES GÈNES

Il existe environ 21 000 gènes chez l'Homme. La plupart des gènes codent pour des protéines qui jouent un rôle particulier dans notre organisme. Certaines participent au transport, à la signalisation cellulaire… D'autres, comme les enzymes, réalisent des réactions chimiques. Deux étapes sont nécessaires à leur fabrication : la transcription et la traduction.

1 - La transcription
Pour fabriquer une protéine, le gène va transmettre son mode d'emploi du noyau au cytoplasme grâce à une molécule navette, l'ARN messager (ARNm). Pour cela le gène est transcrit en un ARNm qui est sa copie exacte ; à un détail près : la base T est remplacée par une base spéciale, la base uracile (U). Les ARNm sont transformés pour enlever des parties non-codantes.

2- La traduction
Une fois dans le cytoplasme, l'ARNm va rejoindre les usines à protéines, les ribosomes. Dans celles-ci seront assemblés les constituants de base d'une protéine, les acides aminés selon la séquence donnée par l'ARNm. Mais comment passer d'un alphabet de 4 lettres (A, U, C, G) à une protéine ? Chaque acide aminé correspond à un ou plusieurs codons. Un troisième acteur, l'ARN de transfert (ARNt), reconnaît spécifiquement le codon de l'ARNm qui correspond à l'acide aminé qu'il porte. Ainsi, le ribosome glisse le long de la séquence de l'ARNm, et assemble les acides aminés apportés au fur et à mesure par les ARNt. Le ruban protéique se replie au cours de sa synthèse pour prendre in fine une conformation tridimensionnelle qui lui confère ses propriétés et sa fonction.


LES ALLÈLES
Chez l’Homme, les chromosomes vont par paire ! Pour chaque paire, ils sont identiques, portent les mêmes gènes. Cependant, il peut y avoir plusieurs versions, ou allèles, d’un même gène. Les combinaisons de deux allèles identiques ou différents donnent le génotype de l’individu. Par exemple, pour déterminer le groupe sanguin, il existe 3 versions du gène : l’allèle A, B et O ; ce qui donne AA, AB, AO, BB, BO ou OO. A et B sont dominants sur O ; A et B sont co-dominants et O est récessif. Le génotype AA donnera le phénotype [A]

Le génotype AB donnera le phénotype [AB]
Le génotype AO donnera le phénotype [A]
Le génotype BO donnera le phénotype [B]
Le génotype OO donnera le phénotype [O]
Le génotype BB donnera le phénotype [B]

Les phénotypes sont le résultat de l’expression des génotypes.


Chez les procaryotes, dont les cellules sont dépourvues de noyau, plus de 90 % du génome codent pour une protéine. Chez les eucaryotes, ce sont seulement 2 %. Les 98 % restants ont été longtemps appelés à tort “ ADN poubelle ” ; leur rôle n’est pas encore complètement élucidé, mais une partie servirait à réguler les gènes.

La déclinaison d'un gène ou comment conjuguer les allèles
Quand vous verrez un chat à 3 couleurs, pariez avec vos amis que c’est une femelle ! Vous gagnerez à tous les coups.

Explications : Les gènes sont à l’origine des caractères héréditaires comme la couleur du pelage des chats. Il existe plusieurs versions d’un gène que l’on appelle allèles.

Dans notre exemple, l’allèle redo confère la couleur orange et red° la couleur noire. Chaque gène, porté par les deux chromosomes d’une même paire, existe donc en deux exemplaires, une combinaison de 2 allèles qui détermine le génotype. Chez les chats, le gène de la couleur du poil est porté par le chromosome sexuel “ X ”. Un mâle (XY) ne possède qu’un seul chromosome X. Il ne peut donc exprimer qu'un seul a

llèle ; il est redo (orange) ou red° (noir). Une femelle (XX), quant à elle, présente une des 3 combinaisons d’allèles ou génotypes possibles : redo/redo, redo/red° ou red°/red° ; le phénotype couleur du pelage [noir et orange] n’apparaît donc que chez la femelle.

 

   DOCUMENT     cea         LIEN

 
 
 
 

HOMMES ET HOMINIDÉS

 

 

 

 

 

 

 

HOMMES ET HOMINIDÉS

Il s'agit d'explorer la dichotomie entre les grands singes et l'Homme et comment comprendre cette divergence aujourd'hui. En consultant les médias, on voit souvent évoquer le fait que l'Homme partage 99% de son matériel génétique avec le chimpanzé. Les Hommes et les chimpanzés, mais aussi les gorilles, sont extrêmement similaires. Les travaux en biologie moléculaire nous permettent de dire qu'il y a environ 7 millions d'années, à la fin du miocène, les ancêtres des humains, des chimpanzés et des gorilles actuels sont partis sur leurs propres chemins évolutifs et leurs propres régions géographique.
Quelles sont les certitudes, les interrogations concernant cette évolution ? Il est impossible de vraiment trancher pour savoir qui du chimpanzé ou du gorille et plus proche de l'Homme. Il s'agirait plutôt d'une trichotomie au sein d'une même population. Le problème peut être abordé sous plusieurs aspects : anatomique, géographique et climatique, environnemental qui façonnent les êtres fossiles et qui ont fait ce que nous sommes avec nos variabilités physiques et culturelles.

Texte de la 439e conférence de l'Université de tous les savoirs donnée le 18 juillet 2002
Grands singes - Hommes : histoire d'une divergence
Par Brigitte Senut,

La divergence entre les grands singes et l'homme est un des sujets les plus discutés de la paléontologie humaine, probablement car il touche directement à nos origines. Les données permettant d'appréhender cette séparation sont fournies par toute une série de disciplines allant de la paléontologie, la géologie, la sédimentologie à la biologie moléculaire. Car il faut, en effet, resituer cette question évolutive dans un cadre bio-éco-géographique plus vaste, plutôt que de se limiter à un cadre anatomique. Les résultats des différents domaines ne concordent pas toujours, c'est ainsi souvent le cas de la biologie moléculaire et de la paléontologie, car les données néontologiques ne prennent pas la dimension essentielle de l'évolution, la quatrième dimension : le temps. L'étude des grands singes et des hommes actuels nous permet de clarifier les relations de parenté, mais le tempo de leur histoire ne nous est fourni que par la paléontologie. Les données de terrain très fructueuses ces dix dernières années nous obligent à remonter au-delà de 6-7 millions d'années, pour comprendre la manière dont la lignée des grands singes s'est isolée de celle de l'homme. Quelles sont ces nouvelles découvertes? Quels sont les nouveaux enjeux? C'est à ces questions que nous allons essayer de répondre dans la suite de cet exposé.

L'apport de la biologie moléculaire
La phylogénie en question
Les molécularistes et les paléontologues s'accordent aujourd'hui sur le fait que les grands singes asiatiques sont des parents relativement éloignés de nous, alors que leurs cousins africains semblent nous être plus proches ; mais au sein de ces derniers, peut-on isoler un genre une espèce plus privilégiée? En d'autres termes, le chimpanzé est-il notre plus proche cousin ? Est-ce le bonobo (ou chimpanzé nain) ? Ou bien l'ensemble gorille-chimpanzé ? Ou bien les chimpanzés, les gorilles et les hommes sont-ils aussi éloignés les uns des autres ? Selon les méthodes d'analyses, il apparaît que tous ces schémas sont possibles. Toutefois, certains auteurs ont largement médiatisé un rapprochement exclusif chimpanzés-hommes. Ceci serait conforté par les études sur l'ADN et l'ADN mitochondrial, alors que d'autres travaux révèlent des branchements différents. Ce qui reste sûr aujourd'hui est que les plus proches parents de l'homme sont africains et que leur ancêtre est, lui aussi, plus vraisemblablement africain.

L'horloge moléculaire
Le concept d'horloge moléculaire est basé sur la constatation que la mesure des divergences des séquences d'acides aminés est corrélée au temps. Les changements sont censés s'opérer à des rythmes constants à partir d'une date de divergence paléontologique donnée (soit celle des ruminants, soit celle des cercopithèques, etc.) ; ce n'est donc pas une méthode indépendante. Or, selon les auteurs, ou selon les groupes utilisés pour calibrer, les résultats sont très différents et on a obtenu des dates variant de 2 millions d'années à plus de 15 millions d'années pour la dichotomie hommes/grands singes. Toutefois, il a été démontré que l'horloge moléculaire ne marche pas, en fait, à vitesse constante. Le taux auquel les changements sont incorporés dans les populations varient en fonction des temps de génération, l'isolation génétique etc. C'est pourquoi, l'horloge est différente entre les éléphants et les souris, il est évident que la souris se reproduisant plus vite, le renouvellement génétique est plus rapide. Par ailleurs, il y a une variation au sein d'une même espèce. La même chose est vraie au sein des primates si on compare des lémuriens ou des chimpanzés. Enfin, il apparaît que sur de longues périodes, l'horloge devient imprécise. L'horloge moléculaire ne marche pas donc pas à la même vitesse dans tous les groupes de mammifères et pour dater les divergences, il convient donc d'utiliser les données temporelles fournies par les fossiles.

Les grands singes et leurs caractères de vie.
Dimorphisme sexuel
Les grands singes de grande taille se caractérisent généralement par de forts dimorphismes de taille et de morphologie liés au sexe. Un des caractères les plus utilisés chez les primates est la canine. Chez les mâles, la racine est massive et a pratiquement la même taille que la base de la couronne. Chez les femelles, la racine plus petite est rétrécie à la base de la couronne. Ce caractère s'observe chez les grands singes actuels et fossiles. Par ailleurs, chez les mâles, les racines étant beaucoup plus grandes, le museau est gonflé et aussi plus projeté vers l'avant, ce qu'on appelle le prognathisme. Quelquefois, cette projection est si importante que la morphologie faciale des mâles et des femelles est aussi très différente. C'est ce qui rend souvent l'interprétation des fossiles isolés difficile. C'est le cas notamment du fameux Kenyapithèque du Kenya considéré longtemps comme un hominidé ancien car sa canine était petite et sa face peu projetée. Or, la une nouvelle études de ces matériels a montré que les spécimens incriminés appartenaient en fait à des individus femelles et Kenyapithecus était une forme éteinte de grand singe, pas placée en position particulière dans notre arbre phylogénétique. La même chose est arrivée avec les Ramapithèques asiatiques. Mais il est intéressant de constater que de nombreux spécimens sensés être nos ancêtres étaient en fait des femelles de grands singes et que les ancêtres de grands singes étaient de mâles... ! C'est le cas typique du groupe des Sivapithèques et Ramapithèques: les premiers ont été considérés comme des ancêtres des orangs-outans et les Ramapithèques, ancêtres de l'homme. Toutefois, lorsque les études sur le dimorphisme sexuel ont été développées au début des années 1980, on s'est rendu compte que les ramapithèques étaient les femelles des sivapithèques, ancêtres des grands singes de Bornéo et Sumatra. Cela allait même plus loin, car le genre Sivapithecus ayant été créé bien avant que celui de Ramapithecus, ce dernier nom devait être abandonné. Les ramapithèques qui avaient eu leur heure de gloire dans les années 1960 à 1980, disparaissaient du paysage paléontologique par le coup du dimorphisme sexuel.

Alimentation
Les primates actuels sont parmi les mammifères les plus diversifiés dans leur alimentation. Ayant accès à toutes les strates des canopées, comme au milieu terrestre, ils se nourrissent de feuilles, et/ou de fruits, et/ou de viande. Il n'est pas rare que les chimpanzés mangent des petites antilopes ou des petits cercopithèques. La morphologie dentaire observée reflète le mode d'alimentation le plus fréquent, mais un animal peut de temps à autres adapter son régime à ce que lui offre son environnement. Les gorilles sont inféodés à des milieux forestiers et se nourrissent de végétaux variés, herbacées et fruits. Le régime alimentaire peut être déduit non seulement des dents, mais aussi des os maxillaire et mandibulaire et de leurs insertions musculaires. Sur l'anatomie des dents, la morphologie des cuspides est assez typée chez les chimpanzés avec des tubercules placés à la périphérie de la couronne et montrant un grand bassin central ; et chez les gorilles avec des tubercules placés à la périphérie mais plus acérés et un bassin central moins élargi. Chez l'homme, qui est un hominoïde à part entière, les tubercules sont globuleux, assez bas et plus centraux. Un autre aspect de la morphologie dentaire concerne l'émail : la variation de son épaisseur reflète également la qualité de ce que l'animal ingère ; ainsi si l'animal consomme plus fréquemment des fruits, l'émail est plus fin et s'il consomme des aliments plus coriaces, l'épaisseur de l'émail est plus épais. En gros, cela semble vrai, mais il faut aussi prendre en compte la surface triturante de la dent, sa croissance et donc sa taille. Les replis de l'émail plus prononcé chez les chimpanzés nous apportent aussi des informations sur le style de nourriture qu'ingurgitent les grands singes. On voit tout l'intérêt de bien comprendre les morphologies actuelles pour déduire des interprétations sur les fossiles.

Locomotion
Les modes de locomotion sont aussi très diversifiés chez les grands singes puisqu'ils varient de la suspension, au grimper vertical, marche sur les branches sur les quatre pattes arrière ou sur les deux pattes arrière. Mais les grands singes pratiquent aussi une marche particulière appelée le knuckle-walking, littéralement la marche sur l'articulation des phalanges antérieures repliées.
C'est le mode classique de déplacement des chimpanzés, qui est un peu modifié chez les gorilles, beaucoup plus lourds. Le mode de déplacement est lié en grande part à la taille de l'animal : ainsi, un gorille mâle de plus de 200 kgs peut difficilement se suspendre aux branches d'arbres, alors que le petit beaucoup plus léger en sera capable. Mais aucun de ces grands singes n'est assez léger pour pratiquer le déplacement acrobatique adopté par les gibbons d'Asie du Sud-Est. Un mode de déplacement utilisé par tous les grands singes plus ou moins fréquemment ou plus ou moins occasionnellement est la marche bipède. Aujourd'hui, le seul hominoïde capable de se déplacer pour la plus grande partie de son temps sur ses deux pattes arrière est l'homme. L'adaptation à la bipédie permanente est un des caractères qui est généralement utilisé pour définir le genre Homo. Chez les fossiles, on observe des bipédies différentes de celles de l'homme actuel, celle des Oréopithèques de Toscane étant probablement la plus éloignée de la nôtre, celle des Australopithèques en étant la plus proche. Les paléontologues n'ont pas à leur disposition tous les ligaments, muscles, etc... , mais l'os enregistre le mouvement le plus fréquemment réalisé ; et par comparaison avec les animaux actuels on peut reconstituer des types de mouvements, puis des associations de mouvements qui débouchent sur des scénarios locomoteurs. Pendant près d'un siècle, les anthropologues ont focalisé leurs travaux sur les restes crâniens et dentaires, parties nobles du squelette pour reconstituer les scénarios de nos origines, mais depuis la fin des années 1970, on s'aperçoit que les modes de locomotion apporte eux aussi des informations à cette quête, et ils sont aujourd'hui considérés comme des éléments à part entière. En fait, la reconstitution des modes locomoteurs passés est essentielle.

Les grands singes fossiles
Les grands singes fossiles sont connus dès l'Oligocène supérieur en Afrique orientale et sont représentés par quelques pièces dentaires attribuées à Kamoyapithecus. Mais c'est au Miocène inférieur que les grands singes vont s'épanouir en Afrique. Si pendant longtemps, on les a cru confinés à l'Afrique orientale, on les a retrouvés au début des années 90 en Egypte, puis en Afrique du Sud en 1996. Les restes extérieurs à l'Afrique orientale sont très peu nombreux : un humérus en Egypte au Wadi el Moghara et une demi-dent supérieure dans la mine de diamants de Ryskop en Afrique du Sud. En raison de leur faible nombre, ils n'ont pas pu être nommés formellement.
En Afrique orientale, par contre, on connaît de très nombreux grands singes de grande taille (dont certains équivalents à un gorille) et de petite taille (proche de celle des gibbons). Nous nous focaliserons sur ceux de grande taille parmi lesquels nous recherchons nos ancêtres.
Les plus connus des grands singes de la période de 22 à 17 Millions d'années environ sont les Proconsul. Très bien représentés au Kenya et en Ouganda par plusieurs formes qui ont la taille des chimpanzés et colobes actuels. Ce sont des grands singes généralisés par leur dentition et leur locomotion. Probablement adaptés à un régime plutôt frugivore, ils habitaient dans des environnements de forêt sèche où ils se déplaçaient à quatre pattes sur les branches, ou au sol. Ces reconstitutions sont basées sur les restes de plantes, de grands mammifères, de micromammifères et ceux d'escargots fossiles, notamment des très riches gisements de l'île de Rusinga au Kenya.

A la même époque les Ugandapithecus, de la taille du gorille, vivaient sur les pentes des volcans de Napak en Ouganda et à Songhor au Kenya. Assez lourds, ils vivaient probablement en partie au sol, mais ils pratiquaient également un grimper vertical. Leurs canines présentent un caractère tout particulier : le sommet de la dent est en forme de lame plutôt que conique. Leurs dents assez massives suggèrent qu'ils se nourrissaient de nourritures assez coriaces. Les Ugandapithèques sont connus jusqu'à la base du Miocène moyen (16-17 Millions d'années) en Afrique orientale, et spécialement sur le gisement de Moroto en Ouganda où ils côtoient les Afropithèques, de taille plus modeste, découverts également sur la rive occidentale du Lac Turkana au Kenya. Entre 17 et 12 millions d'années les grands singes connaissent un second buissonnement avec les Turkanapithèques du Lac Turkana, les Nacholapithèques des Collines Samburu. Dans les gisements de l'île de Maboko on trouve les Kenyapithèques, dont l'espèce présente à Fort Ternan ( Kenyapithecus wickeri) sera considérée, dès sa découverte, comme un hominidé ancien. Cependant, les caractères utilisés à l'époque (petite canine, face plate, émail épais) se sont avérés, pour les premiers, des caractères de dimorphisme sexuel et, pour le dernier, un caractère classique des grands singes du Miocène moyen dont les l'alimentation est basée sur des végétaux plutôt durs. Le Kenyapithèque de Fort Ternan avait aussi été considéré comme un hominidé sur la base de présence de galets utilisés trouvés avec les fossiles. Toutefois, ces cailloux « utilisés » se sont avérés être des pierres de lave brisés naturellement. Par ailleurs, on sait aujourd'hui que d'autres primates utilisent des outils ou manipulent et cela ne leur donne pas automatiquement le statut d'hominidé.

Après avoir longtemps été considérés comme des animaux typiquement est-africains, les grands singes voyaient leur aire de répartition considérablement augmentée par la découverte d' Otavipithecus namibiensis au nord-est de la Namibie. Ils avaient toutefois été signalés en 1975 en Arabie saoudite qui, à l'époque où ils vivaient, était rattachée à l'Afrique orientale. L'Otavipithèque ne ressemble à aucun des grands singes classiques est-africains de l'époque, par sa mâchoire étroite, ses dents aux cuspides gonflées, mais cela n'est pas surprenant car il vivait dans une région très excentrée, par rapport à celle où vivaient les autres grands singes de la même époque.
C'est probablement vers ce moment-là que les grands singes vont émigrer vers l'Eurasie; ainsi, on les retrouve en France, en Espagne, en Hongrie, en Grèce, en Inde, au Pakistan, en Turquie, en Chine... où ils prennent les noms de Dryopithèques, Ankarapithèques, Sivapithèques, Ouranopithèques, Lufengpithèques, etc... Certains d'entre eux, bien que considérés par plusieurs auteurs comme des ancêtres potentiels des Hominidés, semblent plus probablement se rapprocher des grands singes asiatiques modernes. Les caractères utilisés pour en faire des Hominidés se sont avérés être souvent des caractères hérités des grands singes africains antérieurs et non pas dérivés d'Hominidés, et dans certains cas dérivés d'Orangs-outans ou même encore liés au dimorphisme sexuel observé classiquement chez les grands singes actuels et fossiles.

Le trou noir- la divergence
Le trou noir correspond à cette période pendant laquelle nous ne connaissions pratiquement rien au début des années 1990 entre les grands singes du Miocène et les premiers Hominidés avérés, les Australopithèques, c'est à dire environ entre 10-12 millions d'années et 4,2 millions d'années. A l'époque, les quelques pièces fossiles, toutes kenyennes, pouvaient se compter sur les doigts des deux mains: un fragment de maxillaire trouvé au début des années 80 dans les Samburu Hills et vieux de 9,5 millions d'années, une dent isolée dans la Formation de Lukeino datée de 6 millions d'années, un fragment d'humérus vieux de 5,1 millions d'années, un fragment de mandibule à Tabarin vieille de 4,5 millions d'années, un fragment de mandibule à Lothagam (aujourd'hui redatée à 4,2 millions d'années environ). Les nombreuses expéditions menées en Afrique depuis la dernière décennie ont pratiquement triplé le matériel connu au début des années 1990; il n'est donc pas surprenant que les scénarios de nos origines soient largement discutés. A part le maxillaire des Samburu, tous ces fossiles étaient rapportés aux Hominidés. Dans tous les scénarios évolutifs ces restes ont été considérés comme appartenant obligatoirement à des ancêtres des Australopithèque et donc des Hominidés. En fait, les chercheurs dans leur grande majorité ont focalisé leurs travaux sur les Australopithèques et toute pièce hominidée trouvée dans des niveaux plus anciens était systématiquement considérée comme un ancêtre de ceux-ci et donc des hommes. L'évolution était linéaire, ce qui malheureusement ne semble pas très biologique. En effet, jusqu'à 12 millions d'années environ, les grands singes sont largement représentés en Afrique; il faudrait donc admettre que ces derniers disparaissent pour laisser la place à une seule lignée et que celle-ci soit obligatoirement ancestrale à l'homme. Cette interprétation nie le phénomène de radiation chez les grand singes et les hominidés anciens. Vers 6 millions d'années environ, on sait que les grands groupes de mammifères sont très diversifiés et il est probable que les primates (grands singes et hommes inclus) n'ont pas échappé à la règle.

Samburupithecus
Le premier acteur dans ce trou noir est Samburupithecus; découvert au début des années 1980 dans les Samburu Hills au Kenya (mais publié seulement en 1994), il est connu exclusivement par un fragment de maxillaire portant les 2 prémolaires et les 3 molaires. Par certains aspects, il rappelle les gorilles, notamment pas la morphologie de son museau, la position de l'arcade zygomatique relativement basse et antérieure sur la mâchoire. Les tubercules de ses dents sont, en revanche, gonflés; il s'agit sans doute d'une femelle comme le suggère l'alvéole préservée de la canine qui indique que la racine de cette dernière était petite. Par ses caractères, cette pièce pourrait être considérée comme un ancêtre des grands singes et de l'homme, ou un ancêtre de gorilles, mais il faut plus de matériel pour conclure.
Ardipithecus ramidus
En 1994/1995, Ardipithecus ramidus, vieux de 4,4 millions d'années venait combler une lacune dans l'histoire de la dichotomie des grands singes et de l'homme. Découverts en Ethiopie dans la Vallée moyenne de l'Aouache, les restes attribués à cette espèce se composent de dents isolées, de quelques os postcrâniens fragmentaires un petit fragment crânien et un squelette partiel qui n'est toujours pas publié. Ces éléments furent rapportés à un hominidé, mais si certains caractères de ses canines l'en rapprochent effectivement, toute une suite d'autres l'en isolent comme l'épaisseur de l'émail dentaire ou la taille de la canine par rapport aux dents jugales. Le squelette indiquerait une adaptation à la bipédie, mais les restes publiés à ce jour ne permettent pas cette affirmation. Ardipithecus ramidus est-il un hominidé ou un grand singe? Il est bien difficile de conclure à la lueur des éléments disponibles.

Orrorin tugenensis
A l'automne 2000, une douzaine de restes dentaires, mandibulaires et postcrâniens d'un hominidé étaient trouvés dans la Formation de Lukeino au Kenya qui avait déjà livré une dent isolée en 1974. Les gisements qui ont livré les fossiles s'échelonnent dans le temps entre 6,0 et 5,7 millions d'années; le gisement le plus riche étant celui de Kapsomin situé à la base de la formation. Les dents en général sont petites, proches en taille de celles de chimpanzés et des hommes actuels, mais leur forme plus carrée les rapproche des seconds. La morphologie de la canine supérieure portant une gouttière verticale ou la première prémolaire inférieure avec ses racines décalées rappelle la morphologie observée chez les grands singes actuels et fossiles. Toutefois, les tubercules dentaires ne présentent pas les ridulations d'émail classique chez les grands singes, la morphologie de la canine inférieure est intermédiaire entre celle des grands singes et celle de l'homme, l'émail est épais, la face interne des molaires est verticale. La partie antérieure de la mandibule est droite et on n'observe aucun espace (diastème) entre la canine et la première prémolaire inférieures. L'ensemble des caractères dentaires rapprochent Orrorin des hominidés.
La découverte d'Orrorin était importante également par le fait que des restes postcrâniens étaient signalés, dont des fémurs relativement bien conservés. C'est l'étude du fémur qui a montré que Orrorin était bipède. Ceci s'exprime par un col fémoral allongé et aplati antéro-postérieurement, la position de la tête fémorale, la position des insertions musculaires, la distribution de l'os cortical (épaissi à la partie inférieure et plus mince à la partie supérieure) sur la coupe du col fémoral, et la présence en vue postérieure d'une gouttière pour le muscle obturator externus. La plupart de ces caractères sont présents chez les Australopithèques et l'homme et sont classiquement associés à la bipédie. Cependant, certaines différences d'avec les Australopithèques (en particulier, orientation de la tête fémorale, position du petit trochanter) et une meilleure ressemblance avec les hommes indiquent que cette bipédie est plus humaine que celles de Australopithèques. Cet hominidé pratiquait donc probablement habituellement la bipédie; toutefois, il n'est pas encore affranchi du milieu arboré, comme le montrent son humérus et ses phalanges de main.

Orrorin n'est pas un être petit puisque les mesures de son humérus et de son fémur indiquent qu'il était une fois et demie plus grand que Lucy, la célèbre Australopithèque de l'Afar. Cette dernière est de taille modeste, mais possède des dents assez grosses (mégadonte); en revanche, chez Orrorin, l'inverse est vrai, le corps est plus grand mais les dents plus petites (microdonte). Si Orrorin devait être un ancêtre des Australopithèques, eux-mêmes ancêtres de l'homme, il faudrait admettre que des êtres microdontes auraient donné naissance à des mégadontes, qui eux-mêmes auraient donné naissance à des microdontes. Ces aller-retours anatomiques qui touchent à la fois le système masticateur et le système locomoteur semblent douteux et c'est pour cela que nous considérons les Australopithèques comme une branche à part de notre famille. Lors de sa découverte en 2000, Orrorin était le premier Hominidé connu antérieur à 5 millions d'années et sa présence si ancienne remettait en cause les données moléculaires en suggérant une dichotomie entre les grands singes et l'homme très ancienne (bien antérieure à 6 millions d'années).

Ardipithecus ramidus kadabba
Le débat sur nos origines était relancé en juillet 2001 avec la publication d'une sous-espèce d'Ardipithèque, Ardipithecus ramidus kadabba, découverte en Ethiopie dans des niveaux vieux de 5,7 à 5,2 millions d'années. Elle est représentée par des dents et os isolés (notamment fragment d'humérus et phalanges du pied et de la main). Elle se différencie des grands singes actuels par la tendance des canines à être incisiformes et la morphologie générale de ces dernières; mais, elle s'isole également d' Ardipithecus ramidus ramidus par la morphologie des P3 et M3 supérieures et de la canine inférieure. Les caractères des éléments post-crâniens rappellent ceux des grands singes et de certains spécimens de Hadar et suggéreraient des adaptations à la vie arboricole. Même si selon les auteurs, on peut considérer cette sous-espèce d'Hominoïde comme un Hominidé, il n'en reste pas moins qu'un certains nombre de caractères rappellent les grands singes et que les différences d'avec l'autre sous-espèce méritent clarification.

Sahelanthropus tchadensis
Puis, un an après la découverte éthiopienne étaient publiés les restes d'un hominoïde vieux de 6 à 7 millions d'années, trouvés au Tchad, très loin à l'Ouest de la fameuse faille est-africaine. La pièce la plus médiatique est un crâne légèrement écrasé rapporté par ses inventeurs à un Hominidé sur la base en particulier de la petite taille de la canine, le mode d'usure de cette dernière, l'aplatissement de la face, la position dite « plus antérieure » du foramen magnum. Selon les auteurs, le bourrelet sus-orbitaire très massif indiquerait que le crâne appartenait à un individu mâle. Les autres caractères incluent entre autres: des dents jugale (molaires et prémolaires basses), l'émail intermédiaire en épaisseur entre celui des chimpanzés et des Ardipithèques, une morphologie supra-orbitaire robuste (probablement mâle selon les auteurs), un plancher nuchal plat et des insertions musculaires puissantes dans la région nuchale.

La petite canine n'est pas un caractère d'Hominidé sensu stricto comme signalé plus haut; en effet, chez les grands singes miocènes et modernes, la taille de la canine est le plus souvent l'expression du dimorphisme sexuel. La canine du mâle étant beaucoup plus développée, il s'ensuit un gonflement de la région faciale qui reçoit la racine de la dent, alors que chez la femelle, le gonflement est réduit en liaison avec une racine de taille plus modeste; d'où l'aspect plus plat de la face.
La taille du bourrelet sus-orbitaire n'est pas classiquement utilisé pour sexer des crânes isolés. Chez les chimpanzés ou les gorilles actuels, le bourrelet sus-orbitaire apparaît fort chez les mâles, comme chez les femelles au sein d'une même population; il est en général un peu plus fort chez les mâles. Sur un crâne isolé, il est très difficile de déterminer le sexe de l'individu à partir de ce seul caractères. En dehors du fait que la position antérieure du foramen magnum n'est pas confirmée, il faut être prudent car celle-ci n'est pas liée exclusivement à la bipédie, elle aurait, pour certains, un lien avec le développement cérébral Parmi les caractères décrits, certains semblent rapprocher plus volontiers la pièce des grands singes : aplatissement du plancher nuchal, systèmes des crêtes postérieures et le spécimen, probablement femelle n'apparaît pas très différent de celui des grands singes actuels, en particulier des gorilles. Si cette hypothèse s'avérait confirmée, cela rendrait la découverte tchadienne encore plus intéressante scientifiquement, car elle commencerait à combler l'immense lacune de l'histoire des grands singes africains entre 12 millions d'années et aujourd'hui.

L'origine de l'homme : une histoire de climat ?
Si on veut comprendre l'histoire de nos origines, on ne peut pas se limiter à l'étude des modifications anatomiques de nos ancêtres potentiels. Ces derniers ont vécu dans un environnement qui s'est transformé au cours des temps géologiques en liaison avec les modifications climatiques, géographiques, tectoniques et autres. Un vieux mythe qui encombre encore certains de nos ouvrages est la naissance de l'homme et de sa bipédie dans un milieu ouvert de savane. Or, les dernières données suggèrent que le milieu dans lequel vivait Orrorin ou ses parents Ardipithecus était plutôt humide. En particulier, dans l'environnement d' Orrorin, les colobes et les impalas dominaient la faune; ces espèces ne vivent pas en milieu ouvert : les colobes sont des animaux très arboricoles et les impalas vivent plutôt dans des fourrés. D'où probablement les adaptations à la vie arboricole encore bien marqués chez eux comme chez les premiers australopithèques.
Une hypothèse séduisante a été proposée par Coppens au début des années 1980 : la fameuse « East Side Story ». Dans cette hypothèse éco-climatico-géographique, le rift jouait un rôle majeur: des grands singes auraient été largement distribués en Afrique au Miocène, puis vers 8 millions d'années, une réactivation de la faille aurait engendré la coupure en deux de cette population ancestrale, l'une à l'Ouest aurait donné les grand singes actuels africains restés inféodés au milieu forestier et l'autre aurait évolué vers l'homme dans un milieu plus sec (mais pas forcément de savane sèche, ni de désert). Toutefois, vers 8 millions d'années, il y a une modification du climat à l'échelle du monde. L'établissement de la calotte polaire arctique a entraîné le mouvement vers le Sud des ceintures climatiques mondiales, affectant ainsi la température de l'eau de océans, la répartition des faunes et leur composition. Les grands singes faisant partie de cette faune n'ont probablement pas échappé à ce grand remaniement. L'événement a été ressenti à l'échelle du globe de l'Amérique à l'Europe en passant par l'Afrique. C'est à cette époque que se met en place le Sahara. Le changement faunique a aussi coïncidé avec l'effondrement du rift et des changements à l'échelle locale ont pu avoir lieu. Si l'hypothèse de l'East Side Story a souvent été caricaturée, elle n'en demeure pas moins valide dans l'état actuel de nos connaissances d'un point de vue chronologique et climatique.

Quel(s) ancêtre(s)
Selon certains auteurs, les hominidés antérieurs à 3,5 millions d'années sont les ancêtres des Australopithèques, eux-mêmes ancêtres des hommes. Les découvertes réalisées récemment dans le Miocène supérieur et le Pliocène suggèrent que la diversité des formes a été plus importante et en fait, il semble bien qu'il y ait eu une lignée mégadonte Australopithèque qui s'est éteinte vers 1,4 Millions d'années avec peut-être certains ardipithèques à sa base et une lignée plus microdonte avec Orrorin, Praeanthropus et les Homo anciens. L'origine de ces lignées est à rechercher au-delà de 6 millions d'années et peut-être jusqu'à 12-13 Millions d'années. Qui sont les ancêtres des grands singes africains modernes ? Des fossiles découverts récemment au Kenya suggèrent que des formes proches des chimpanzés auraient pu être présents dès 12,5 millions d'années dans la Formation de Ngorora, Certains Ardipithèques en seraient-ils les descendants? Une dent fragmentaire de 6 millions d'années trouvée au Kenya semble proche des gorilles et à la même époque ces derniers auraient pu être au Tchad. Quoiqu'il en soit, il apparaît que la dichotomie entre les grands singes africains et l'homme est plus ancienne que ne le suggèrent les données moléculaires et que la découverte de tout jalon sur la lignée des premiers sera un apport essentiel à la compréhension des autres. Mais où se situe l'origine des hominidés ? est-elle donc à l'Est ? ou ailleurs ? Si on en croit l'Abbé Breuil, le berceau est à roulettes. Si on s'en tient aux données actuelles, l'Afrique orientale semble renfermer les plus anciennes traces d'hominidés. Si le matériel tchadien était confirmé dans son statut d'hominidé, l'Afrique centrale tiendrait peut-être le flambeau. Mais finalement, cela n'a pas grande importance lorsqu'on réalise que 3% peut-être du continent africain sont aujourd'hui prospectés. Nos scénarios sont forcément voués à changer. En revanche, on peut affirmer aujourd'hui que des êtres bipèdes très anciens sont connus vers 6 millions d'années en Afrique et qu'ils vivaient dans un milieu plus humide qu'on ne le pense généralement.


Bibliographie
M. Brunet, F. Guy, D. Pilbeam, H. Mackaye, A. Likius, D. Ahounta, A. Beauvilain, C. Blondel, H. Bocherens, J-R. Boisserie, L. De Bonis, Y. Coppens, J. Dejax, C. Denys, P. Duringer, V. Eisenmann, G. Fanone, P. Fronty, D. Geraads, T. Lehmann, F. Lihoreau, A. Louchar, A. Mahamat, G. Merceron, G. Mouchelin, O. Otero, P. Campomanes, M. Ponce De Leon, J-C. Rage, M. Sapanet, M. Schuster, J. Sudre, P. Tassy, X. Valentin, P. Vignaud, L. Viriot, A. Zazzo, C. Zollikofer, « A new hominid from the Upper Miocene of Chad, Central Africa », Nature, 418, 145-151, 2002
Y. Coppens, « Hominoïdés, Hominidés et Hommes », La Vie des Sciences, Comptes rendus, série générale, 1, 459-486, 1984
Y. Coppens & B. Senut (Eds.), Origine(s) de la bipédie chez les Hominidae, Cahiers de Paléoanthropologie, Paris, CNRS, 1991
H. Ishida, M. Pickford, « A new Late Miocene hominoid from Kenya : Samburupithecus kiptalami gen et sp. nov », C. R Acad. Sci. Paris, IIa , 325, 823-829, 1998
M. Pickford, H. Ishida, « Interpretation of Samburupithecus, an Upper Miocene hominoid from Kenya », C. R Acad. Sci, Paris, IIa 326, 299-306, 1998
M. Pickford, B. Senut, « The geological and faunal context of Late Miocene hominid remains from Lukeino, Kenya », C. R. Acad. Sci, Paris, sér IIa, 332, 145-152, 2001
M. Pickford, B. Senut, D. Gommery, J. Treil, Bipedalism in Orrorin tugenensis revealed by its femora. C. R. Palevol 1, 191-203, 2002
Y. Sawada, T. Miura, M. Pickford, B. Senut, T. Itaya, C. Kashine, M. Hyodo, T. Chujo, H. Fujii, « The age of Orrorin tugenensis, an early hominid from the Tugen Hills, Kenya », C. R. Palevol, 1, 293-303, 2002
B. Senut, « Les grands singes fossiles et l'origine des Hominidés : mythes et réalités », Primatologie, 1, 93-134, 1998
B. Senut, M. Pickford, D. Gommery, P. Mein, K. Cheboi, Y. Coppens, « First hominid from the Miocene (Kukeino Formation, Kenya) », C. R. Acad. Sci, Paris, série IIa, 332, 137-144, 2001
T.D. White, G. Suwa, B. Asfaw, « Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia », Nature, 371, 306-312, 1994
T.D. White, G. Suwa, B. Asfaw, « Corrigendum - Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia », Nature, 375, 88, 1995
G. WoldeGabriel, T.D. White, G. Suwa, P. Renne, J. de Heinzelin, W. K. Hart, G. Helken, « Ecological and temporal palcement of early Pliocene hominids at Aramis, Ethiopia », Nature, 371, 330-333, 1994
M. Wolpoff, B. Senut, M. Pickford, J. Hawks, « Sahelanthropus or Sahelpithecus ? », Nature, 419, 581-582.

 

VIDEO       CANAL  U         LIEN

 
 
 
 

LA RESPIRATION

 

 

 

 

 

 

 

respiration
(latin respiratio)

Consulter aussi dans le dictionnaire : respiration
Cet article fait partie du dossier consacré à l'air et du dossier consacré à la respiration.
Ensemble des phénomènes permettant l'absorption de l'oxygène et le rejet du gaz carbonique par les êtres vivants.

PHYSIOLOGIE
Cet article aborde la physiologie de la respiration animale et végétale. Pour la physiologie humaine et les troubles respiratoires voir l'article respiration [médecine].
La respiration produit de l’énergie à partir des molécules organiques apportées par l’alimentation. Elle s'effectue dans toutes les cellules, consomme de l’oxygène et rejette du dioxyde de carbone (ou gaz carbonique).


1. ÉCHANGES ET TRANSPORT DES GAZ RESPIRATOIRES

1.1. LES ÉCHANGES RESPIRATOIRES
L’oxygène nécessaire aux cellules est prélevé dans le milieu extérieur, tandis que le dioxyde de carbone (ou gaz carbonique), qui est un déchet de la respiration, y est rejeté. Ce processus constitue les échanges respiratoires.
Chez les mousses et les algues, l’oxygène diffuse à travers l’épiderme et gagne toutes les cellules. Chez les plantes, les échanges respiratoires ont lieu au niveau des feuilles, des racines et/ou de l'écorce ; ils se font, par simple diffusion, par de petits pores appelés stomates (sur les feuilles) et lenticelles (sur l’écorce et les racines).
Chez les protozoaires (unicellulaires à affinités animales), de structure très simple (spongiaires, cnidaires) ou de très petite taille (certains vers), les gaz diffusent directement entre le milieu et chaque cellule de l’animal. Chez les autres animaux, les échanges d'oxygène et de gaz carbonique se font au niveau d'organes spécialisés dans la respiration. Ces organes respiratoires sont, en milieu aquatique, des branchies qui permettent de respirer l’oxygène dissous dans l’eau (chez les poissons, les mollusques aquatiques, les crustacés, les larves d’amphibiens) et, en milieu terrestre, des trachées (chez les insectes, les myriapodes et certains arachnides), des phyllotrachées (la majorité des arachnides) ou des poumons (chez les mollusques gastéropodes terrestres, les amphibiens adultes, les reptiles, les oiseaux, les mammifères). Certains poissons d’eau douce africains vivant dans des eaux peu oxygénées ont à la fois des poumons et des branchies. Bien que vivant en milieu aquatique, les mammifères marins n’ont pas de branchies mais bien des poumons, et remontent régulièrement à la surface pour respirer l’oxygène de l’atmosphère grâce à leurs poumons. Chez certains animaux, une partie des échanges gazeux se fait par la peau et les muqueuses. C’est le cas chez les amphibiens adultes et chez le périophtalme, petit poisson des mangroves qui peut passer jusqu’à 2 heures hors de l’eau grâce à la respiration cutanée. , trachées, poumons ou branchies. Chez les amphibiens, une grande partie des échanges a lieu à travers la peau.
Chez l'homme adulte au repos, 250 ml d'oxygène sont consommés chaque minute, et 200 ml de dioxyde de carbone sont produits ; au cours d'un effort, ces valeurs sont multipliées par 10 environ.

1.2. SYSTÈMES DE TRANSPORT
Chez les végétaux, l’oxygène prélevé dans l’atmosphère gagne les cellules grâce à un réseau de lacunes (espaces entre les cellules) ; le dioxyde de carbone rejeté par la respiration au niveau de chaque cellule suit le chemin inverse. Les gaz circulent également de cellule en cellule grâce à des perforations des parois cellulaires.
Chez la plupart des animaux, il existe un système de transport des gaz entre la surface respiratoire qui assure les échanges avec le milieu extérieur, et les cellules de l’organisme – qui en sont parfois très éloignées. Ce transport dans l’organisme est le plus souvent assuré par le sang. Chez les invertébrés qui ne respirent pas avec des trachées, ce rôle est rempli par l’hémolymphe (l’équivalent du sang chez les invertébrés) – chez les invertébrés à trachées (insectes notamment), ce sont les trachées elles-mêmes (ou plutôt les trachéoles) qui apportent l’oxygène aux cellules.

LES PIGMENTS RESPIRATOIRES
Le sang et l’hémolymphe contiennent des pigments spécialisés dans le transport des gaz respiratoires, qui ont une très forte affinité pour l’oxygène. Il en existe de nombreux types, mais tous ont en commun une structure protéique, à laquelle sont associés des ions métalliques (fer, cuivre). Chez les invertébrés, ces pigments sont en solution dans le liquide, tandis que chez les organismes plus complexes, ils sont contenus dans des cellules.
Ainsi l'hémoglobine des vertébrés est—elle incluse dans les globules rouges (hématies) du sang ; c'est d'ailleurs elle qui leur donne leur couleur rouge. C’est une protéine de forme à peu près sphérique, de 5,5 nm de diamètre. Elle est composée de sous-unités protéiques (quatre le plus souvent) qui contiennent chacune un atome de fer. Celui-ci a la propriété de fixer l'oxygène (de l'air ou celui dissous dans l'eau), et de l'abandonner (le relarguer) au voisinage de ces cellules. Chez de nombreux crustacés et mollusques, le pigment respiratoire, dissous dans l'hémolymphe, est l'hémocyanine, qui contient des atomes de cuivre.

LE TRANSPORT DU DIOXYDE DE CARBONE
Le dioxyde de carbone étant très soluble dans l'eau (30 fois plus que l'oxygène), aucun problème réel de transport ne se pose : il diffuse rapidement des tissus qui le rejettent vers l'extérieur (diffusion par le sang, d'où il est entraîné vers les poumons). Au niveau des alvéoles pulmonaires, la concentration de ce gaz dans l'air est relativement faible, et il est donc facilement libéré.
Malgré cela, le dioxyde de carbone n'est pas seulement transporté sous forme dissoute. En effet, il peut se combiner avec l'eau pour former des ions bicarbonate (HCO−3), et cette transformation est accélérée à l'intérieur des hématies par une enzyme, l'anhydrase carbonique. Ces ions représentent en fait la forme la plus abondante du dioxyde de carbone véhiculée par le sang. Enfin, le dioxyde de carbone peut se combiner avec le groupement amine (–NH2) des protéines et, en particulier, avec celui de l'hémoglobine.
Ainsi, auprès des cellules, les hématies se chargent du gaz carbonique produit par ces dernières, qu'elles relarguent ensuite au niveau des surfaces respiratoires.

1.3. LES FACTEURS MODIFIANT LE TRANSPORT D'OXYGÈNE
Certains facteurs modifient et régulent l'association entre le pigment respiratoire et l'oxygène. En effet, il est important que le pigment puisse, ponctuellement, capter des quantités de gaz plus importantes et libérer rapidement les molécules dans les tissus qui en ont besoin. Parmi ces facteurs influençant l'affinité des pigments pour l'oxygène, on trouve le pH, la température et le 2,3-diphosphoglycérate (DPG). Ainsi, une légère diminution du pH (pH plus acide) affaiblit la liaison entre l'oxygène et le pigment respiratoire. Or, l'augmentation de la teneur en CO2 du sang le rend plus acide, ce qui incite les pigments à relarguer leur oxygène.
L'augmentation de la température diminue l'affinité des pigments pour l'oxygène (c'est-à-dire que les pigments relâchent plus facilement l'oxygène qui leur est lié). Au niveau physiologique, ceci est important, car les tissus actifs – comme les muscles lors d'un effort – ont une température plus élevée : cette propriété permet de libérer plus rapidement l'oxygène à leur niveau et donc de mieux répondre à leur demande élevée en oxygène. Le DPG a une action comparable à celle de la température au niveau de l'association oxygène/hémoglobine. Les hématies d'un fœtus ayant une concentration en DPG plus faible que celle des hématies de la mère, l'affinité de l'hémoglobine du fœtus pour l'oxygène est plus importante. Cette propriété explique que l’oxygène puisse circuler sans problème du sang de la mère vers celui du bébé.

1.4. LE PHÉNOMÈNE DE RESPIRATION DANS LES ŒUFS
Aucun mouvement respiratoire ne peut être observé chez un œuf et, pourtant, celui-ci respire. C'est que les échanges gazeux se font à travers les milliers de pores microscopiques de la coquille, selon les règles de la diffusion.
Lorsque la teneur en oxygène de l'œuf est plus basse que celle de l'atmosphère, l'oxygène entre spontanément. De même, lorsque le taux de dioxyde de carbone interne s'élève, celui-ci s'échappe de l'œuf. Collé contre la membrane interne de la coquille, un feuillet richement vascularisé, l'allantochorion (l'équivalent du placenta des mammifères) est le lieu où s'effectuent les échanges gazeux avec la circulation sanguine de l'embryon. Chez l'embryon de poulet, dont l'incubation dure 21 jours, l'allantochorion est déjà constitué le 5e jour. La respiration pulmonaire commence le 19e jour, 2 jours avant l'éclosion. Le jeune perce alors la chambre à air de l'œuf (la petite réserve d’air qui se forme à la base de la coquille), qui est apparue entre-temps, et commence à respirer avec ses poumons.

2. LES RÉACTIONS DE LA RESPIRATION CELLULAIRE
Les réactions biochimiques de la respiration se font à l’intérieur des cellules, dans de petits organites spécialisés, les mitochondries. La totalité des réactions de la chaîne respiratoire et des phosphorylations a lieu dans la membrane interne des mitochondries. Plus l'activité respiratoire des mitochondries est importante, plus cette dernière comporte de crêtes ou de replis membranaires.
Les réactions de la respiration cellulaire se font au niveau d’un ensemble de complexes protéiques (numérotés de I à IV) situés dans la membrane interne de la mitochondrie, et appelé chaîne respiratoire. Elles commencent par des déshydrogénations et se poursuit par des transferts d'électrons vers l'oxygène.

2.1. GLYCOLYSE, CYCLE DE KREBS ET CHAÎNE RESPIRATOIRE
Le « carburant » essentiel des cellules, à partir duquel la respiration produit de l’énergie, est le glucose. Ce n’est toutefois pas directement lui qui pénètre dans les mitochondries : il est d’abord dégradé dans le cytoplasme par les réactions de la glycolyse, pour donner de l’acide pyruvique, ou pyruvate (1 molécule de glucose donne 2 molécules d’acide pyruvique). C’est cet acide pyruvique qui passe dans la matrice de la mitochondrie. Là, il est transformé en acétyl-Coenzyme A, ou acétyl-CoA (avec production de CO2). L’acétyl-CoA est incorporé dans le cycle de Krebs. Celui-ci aboutit, dans la matrice de la mitochondrie, à la formation de transporteurs réduits (NADH) et de protons (H+), avec libération de CO2.
Au niveau de la membrane interne des mitochondries, les transporteurs réduits sont réoxydés. Les électrons cédés sont pris en charge par d’autres transporteurs situés dans cette membrane, les cytochromes. Les réactions qui se produisent le long de cette chaîne de transport d’électrons (la chaîne respiratoire), grâce à l’énergie qu’elles libèrent, entraînent un transport actif de protons de la matrice de la mitochondrie vers l’espace situé entre ses deux membranes (espace intermembranaire). Ceci induit, de part et d’autre de la membrane interne (imperméable aux protons), la création d’un gradient de protons (H+), qui représente une énergie potentielle.

2.2. PRODUCTION D’ÉNERGIE SOUS FORME D’ATP
La membrane interne des mitochondries possède des complexes enzymatiques (ATP synthétases ou ATPases) qui forment chacun un canal à protons. Le flux passif des protons à travers ces canaux fournit l’énergie nécessaire à la phosphorylation d’un composé à deux phosphates, l’ADP (adénosine diphosphate) en composé à trois phosphates, l’ATP (adénosine triphosphate). L’ATP est une molécule très énergétique ; il est la source d’énergie universelle de toutes les réactions de la cellule. Au bout de la chaîne respiratoire, l’oxygène, dans la matrice mitochondriale, constitue l’accepteur final des protons, ce qui aboutit à la formation d’eau (H2O).
La chaîne respiratoire est hautement énergétique : à partir de 1 molécule de glucose, elle produit 34 ATP. La glycolyse en produit 2, et le cycle de Krebs 2 également. En tout, la dégradation d’une molécule de glucose par voie aérobie (en présence d’oxygène) produit dont 38 ATP.

ZOOLOGIE
       
Quel que soit le groupe zoologique considéré, l'appareil respiratoire assure les échanges d'oxygène et de gaz carbonique entre l'organisme et son milieu, soit directement (trachées des insectes), soit par l’intermédiaire d’un système circulatoire (poumons, branchies). Selon qu’il est aquatique (branchies) ou aérien (poumons, trachées), sa physiologie varie. Certains animaux respirent aussi au travers de leur épithélium cutané.
Il existe ainsi quatre modes de respiration chez les animaux, mettant en jeu des organes et des mécanismes respiratoires différents.

1. LA RESPIRATION PULMONAIRE
Elle se fait par l’intermédiaire de poumons, qui représentent une invagination du milieu extérieur dans l’organisme. C’est le mode de respiration des invertébrés pulmonés (escargots, scorpions, certaines araignées), des amphibiens, des reptiles, des oiseaux et des mammifères (aussi les mammifères aquatiques ne peuvent-ils rester indéfiniment en plongée et doivent-ils remonter régulièrement en surface pour respirer l’oxygène de l’air), ainsi que de quelques espèces de poissons (les dipneustes d'Australie et les protoptères d'Afrique, qui possèdent aussi des branchies).
Mis à part chez les invertébrés pulmonés, chez lesquels le renouvellement de l’air est surtout assuré de manière passive (par diffusion), il existe généralement un système de ventilation.

2. LA RESPIRATION TRACHÉENNE

Système respiratoire des insectes
C’est le mode de respiration des insectes et de certains autres arthropodes, tels les myriapodes (mille-pattes). L'appareil respiratoire consiste en tubes ramifiés appelés trachées (à leur tour ramifiés en tubes plus petites, les trachéoles), qui s’ouvrent à l'extérieur par des pores appelés stigmates et se terminent dans les tissus. L’oxygène, qui pénètre par les stigmates, se rend directement, via le réseau trachéen, aux cellules qui l’utilisent. Le système respiratoire trachéen est indépendant du système circulatoire.
Chez de nombreux arachnides, les trachées peuvent être complétées ou remplacées par des phyllotrachées. Ces petits sacs, qui contiennent des feuillets à travers lesquels s’effectuent les échanges gazeux, sont aussi appelés poumons, mais sur le plan anatomique, ils correspondant à des trachées modifiées.

3. LA RESPIRATION BRANCHIALE

Système respiratoire des poissons
Elle se fait par l’intermédiaire de branchies, qui représentent une expansion de l’animal baignant dans le milieu extérieur (l’eau), et qui captent l’oxygène dissous dans l’eau. La respiration branchiale se rencontre chez de nombreux invertébrés (annélides, mollusques, crustacés, etc.), chez les poissons et chez les larves d’amphibiens.

4. LA RESPIRATION CUTANÉE
Chez les protozoaires, les spongiaires, les cœlentérés, etc., c’est le seul mode de respiration : l'oxygène et le gaz carbonique diffusent directement à travers la membrane cellulaire (protozoaires) ou l'épiderme. Parmi les vertébrés, elle existe chez les amphibiens, chez qui elle joue un rôle capital, qui permet de compléter le faible apport en oxygène assuré par les poumons. Chez les anoures (grenouilles, crapauds), il existe un troisième mode de respiration : la respiration bucco-pharyngée (la muqueuse de la bouche est très vascularisée, assurant une partie des échanges gazeux ; le renouvellement de l’air est assuré par les battements du plancher buccal). Les salamandres sans poumons, qui ne possèdent ni branchies ni poumons, respirent uniquement par la peau, qui doit rester constamment humide.

BOTANIQUE
Les voies métaboliques de la respiration des végétaux sont tout à fait comparables à celles des animaux. Elles ont lieu à l'intérieur des cellules, au niveau des mitochondries. La respiration consiste essentiellement en une oxydation des aliments (glucides surtout, mais aussi lipides et protéines si les glucides viennent à manquer) fragmentés grâce à des enzymes. Elle libère de l'énergie utilisable par la plante et se manifeste, extérieurement, par la pénétration d'oxygène et le rejet de gaz carbonique.

1. DES STOMATES POUR LES ÉCHANGES GAZEUX

Les stomates sont de petits pores situés à la surface des feuilles, qui s'ouvrent ou se ferment selon les besoins. C’est par ces ouvertures que se font les échanges gazeux (ceux de la respiration, mais aussi ceux de la photosynthèse) de la plante avec le milieu extérieur. Toutefois, une partie de l'oxygène peut être captée dans le sol par le système racinaire. Chez les arbres, l’écorce porte également des pores, appelés lenticelles.

2. LE QUOTIENT RESPIRATOIRE
Le quotient respiratoire varie avec la nature des substances qui sont détruites par la respiration ; égal à 1 lorsque les glucides seuls sont oxydés, il peut devenir supérieur (3 pendant la maturation des fruits, 1,57 pendant la formation des graines des plantes oléagineuses), ou au contraire très faible (de 0,4 à 0,5) pendant la germination de ces graines. La combustion respiratoire du glucose a pour formule simplifiée : C6H12O6 + 6O2 → 6CO2 + 6H2O + 688 kcal. Mais en raison de l'extrême complexité des réactions intermédiaires (cycle de Krebs, formation d'ATP), le rendement est seulement voisin de 40 %.

3. MODIFICATIONS DE L’ACTIVITÉ RESPIRATOIRE DES VÉGÉTAUX
De nombreux facteurs physiques de l'environnement, parmi lesquels la teneur en oxygène, sont susceptibles de modifier l'activité respiratoire des végétaux. Celle-ci croît notamment de façon régulière en fonction de la teneur en oxygène, et l'on parvient à un palier pour des valeurs proches de celle de l'atmosphère, soit 21 %. Les sols marécageux, sans atmosphère interne, créent des conditions d'asphyxie pour les racines ; mais les plantes disposent, en général, de caractères adaptatifs, comme les racines aériennes, qui permettent d'en limiter les effets néfastes. En agriculture, l'action bénéfique des labours est due pour une bonne part à la meilleure aération des organes souterrains.

Une hausse de la température, du moins jusqu'à 40 ou 50 °C, augmente l'activité respiratoire. Mais c'est là un phénomène qui n'est dû qu'aux effets de la température sur la vitesse à laquelle se produisent les réactions chimiques.

4. RESPIRATION ET PHOTOSYNTHÈSE

La respiration utilise de l’oxygène et rejette du dioxyde de carbone, tandis que la photosynthèse utilise du dioxyde de carbone et rejette de l’oxygène. Si on mesure les échanges gazeux d’une plante, on s’aperçoit que le jour, elle rejette de l’oxygène, tandis que la nuit, elle émet du dioxyde de carbone. Les fonctions respiratoire et chlorophyllienne semblent ainsi être l'inverse l'une de l'autre. En fait, la respiration ne cesse jamais, sous peine d'asphyxie ; elle a lieu en permanence, jour et nuit, comme pour tous les êtres vivants. En revanche, chez la plupart des plantes, la photosynthèse se produit le jour, car elle utilise l’énergie lumineuse du soleil. Son intensité est généralement plus grande que celle de la respiration : elle rejette plus d’oxygène que ce que la respiration en consomme, ce qui fait qu’elle la dissimule lorsque les échanges gazeux à la lumière sont mesurés.

5. LA PHOTORESPIRATION
Il convient de bien séparer la respiration des plantes de leur photorespiration. La photorespiration est un phénomène particulier étroitement associé à la photosynthèse, et qui existe chez toutes les plantes chlorophylliennes. Elle se produit uniquement à la lumière et débute dans les chloroplastes. Elle produit un dégagement de gaz carbonique ; ce dégagement induit une perte de la quantité de dioxyde de carbone assimilé par la photosynthèse, donc diminue le rendement photosynthétique. Ce phénomène a été interprété à une époque comme un gaspillage, mais en fait, il a été montré que la photorespiration génère des produits métaboliques très utiles à la plante, tel un précurseur d’acides aminés.

 

  DOCUMENT   larousse.fr    LIEN

 
 
 
 

L'IDENTITÉ GÉNÉTIQUE

 

 

 

 

 

 

 

L'IDENTITÉ GÉNÉTIQUE

Conférence du 4 janvier 2000 par Antoine Danchin. Deux lois fondamentales régissent la génétique. La première est la conservation de la mémoire. Elle est permise par la structure de la molécule d'ADN, support de l'information génétique. Celle-ci est constituée de deux brins en vis-à-vis utilisant la complémentarité des bases deux à deux. Il est donc possible de recopier l'information en séparant les deux brins pour leur associer à chacun un nouveau brin complémentaire. Cette réplication est indépendante de la signification de l'information recopiée. La seconde loi correspond à l'existence d'un code génétique. Il s'agit d'une règle de correspondant entre deux niveaux, les acides nucléiques et les protéines. Les mécanismes de copie de l'information génétique font des erreurs qui créent des formes non identiques sur lesquelles la sélection exerce un tri passif. Il n'y a pas survie du plus apte mais simplement élimination du moins apte. Le concept de fonction est central. Toute fonction est issue d'une évolution et contrainte par une structure. La genèse des fonctions a lieu de façon opportuniste à partir de moyens préexistants.
L'évolution va donc créer de nouvelles fonctions en capturant des structures déjà utilisées pour d'autres fonctions. Le but de tout organisme est d'occuper le plus de place possible. La première solution consiste à se dupliquer. Comme des variants apparaissent il faut ensuite cohabiter avec l'autre. La première réaction est de chercher à l'éliminer. Des sondes, des capteurs ont ainsi été créés pour déterminer si l'autre est identique ou différent de soi-même. Des relais sont ensuite activés jusqu'à la fabrication et la libération dans l'environnement d'une substance ou antibiotique qui puisse tuer l'autre. D'autres interactions entre les organismes peuvent être la coopération, le parasitisme ou la création d'organismes multicellulaires. L'ordre des gènes sur les chromosomes n'est pas innocent. Ainsi, il existe pour les gènes du développement une correspondance entre l'ordre des gènes et la disposition des parties du corps de l'animal qu'ils induisent. L'ordre tête, thorax, abdomen puis queue est ainsi respecté.

Texte de la 4ème conférence de l'Université de tous les savoirs réalisée le 4 janvier 2000 par Antoine Danchin
Lidentité génétique
Il y a 3000 ans en Grèce, les gens interrogeaient loracle de Delphes, la Pythie, sur leur avenir. Elle leur répondait par des questions énigmatiques. Lune delles était la suivante : Jai une barque faite de planches et les planches susent une à une. Au bout dun certain temps, toutes les planches ont été changées. Est-ce la même barque ? Clairement, le propriétaire répond oui, avec raison : quelque chose, ce qui fait que la barque flotte, sest conservé, bien que la matière de la barque ne soit pas conservée. Puisque toutes les planches ont été changées et que la nature même du bois peut avoir été différente, il y a dans la barque plus que sa simple matière.
Pourquoi choisir cette image, cette question pour parler de la vie ? Il est essentiel de concevoir le vivant et la biologie comme une science des relations entre objets plus quune science des objets. Il sagit de découvrir la forme de ces relations : connaître simplement les objets, disséquer lanimal, ne suffit pas si lon na pas compris les relations entre les objets.
Un ensemble de relations entre objets, cest une propriété abstraite, comme le plan de la barque est abstrait par rapport aux planches qui la composent. Pour comprendre la biologie, il faudra donc un effort dabstraction et considérer d'abord un certain nombre de processus et de lois.
Les processus qui font que les organismes vivent sont au nombre de quatre. Le premier est le métabolisme. Il ny a pas dorganismes vivants dans lesquels il ny ait transformation dobjets en dautres objets, essentiellement des petites molécules ou de plus grosses molécules, transformées les unes dans les autres. Bien quil existe un état quon puisse appeler la dormance, entre la vie et la mort - cest létat de la graine ou létat de la spore du champignon ou de la bactérie - on ne pourra définir lorganisme comme vivant quau moment où son métabolisme se sera réveillé, où l'on aura vu ces changements dobjets les uns dans les autres. Cest la nature même du métabolisme de créer des relations et de les manipuler.
La deuxième caractéristique des organismes vivants est la compartimentation. Lélément de base de la vie, la cellule, est faite dun intérieur et dun extérieur. La vie a deux stratégies dorganisation de la compartimentation : ou bien on a des cellules uniques avec une enveloppe plus ou moins compliquée, qui doivent vivre dans un environnement extrêmement varié auquel elles doivent rapidement sadapter ce qui correspond à la plupart des microbes que nous connaissons. La deuxième stratégie, cest au contraire de multiplier les membranes et les peaux, jusquà nos vêtements, pour isoler autant que possible le milieu intérieur du milieu extérieur.

A ces deux stratégies de compartimentation sont associées des stratégies de mise en mémoire de quelque chose qui va se transmettre de génération en génération et qui va exprimer la règle de construction des organismes vivants: le génome. Le support physique du génome est formé dune famille de molécules constituées de motifs chimiques de base simples : seulement quatre types différents, enchaînés à la suite comme les lettres de lalphabet sont enchaînées pour construire les phrases d'un livre.
On peut décrire une partie majeure de ce qui fait la vie des organismes par un processus de mémoire qui est la transmission dun premier texte, celui du génome d'une part, et d'autre part la traduction de ce texte en un autre, destiné à mettre en Suvre concrètement le contenu du premier. Le fait davoir le texte du génome, puis ensuite un second texte, ouvre des possibilités extraordinaires à la vie. Ce premier texte est fait dune classe de molécules, les acides nucléiques d'où le nom de l'acronyme ADN, pour "Acide DésoxyriboNucléique", formé de quatre motifs de base enchaînés les uns à la suite des autres. Mais ce texte est un texte de recettes, qui ne suffit pas, seul, à faire fonctionner un organisme vivant. Il faut mettre en Suvre la recette. Un deuxième type dobjets dans les organismes vivants, les protéines, correspond aussi à l'enchaînement déléments de base, mais, cette fois-ci, ces éléments sont au nombre de vingt : les acides aminés. Il existe une correspondance entre cette mémoire, les acides nucléiques, et ces objets, les protéines, qui servent à la construction architecturale des cellules, à la manipulation de toutes les règles de contrôle ou aux règles du métabolisme.
Ces quatre processus (métabolisme, compartimentation, mémoire et manipulation) doivent obligatoirement fonctionner ensemble pour construire un organisme vivant. Si l'on choisit ces éléments comme nécessaires à la définition de la vie, les virus, par exemple, ne sont pas des organismes vivants : ils ont la propriété de mémoire, de compartimentation, quils acquièrent de la cellule-hôte, mais ils sont incapables de métabolisme et de manipulation. Les virus sont donc des parasites de mémoire purs. La même image de parasites purs de la mémoire est apparue en science des calculateurs électroniques où l'on a des morceaux de programmes qui se promènent dans les ordinateurs et peuvent avoir comme propriété de se répandre en se multipliant eux-mêmes, si possible à lidentique, et en se propageant. Une nouvelle idée apparaît ici, liée à cette idée de mémoire, celle de programme.
A ces quatre processus sajoutent deux lois. Une première loi permet de conserver la mémoire. Cette mémoire est sous forme de son support matériel, double ; elle est faite de deux éléments complémentaires, comme le sont le positif et le négatif photographique, l'un contre lautre, qui permettent, lorsquon les sépare, de reconstituer entièrement l'un à partir de lautre. Wilkins, Watson et Crick ont découvert en 1953 la structure de lacide désoxyribonucléique, une double hélice formé de deux brins complémentaires, ce qui a permis de comprendre comment on pouvait conserver à lidentique un enchaînement de motifs chimiques au cours des générations. On a ici une règle de complémentarité, la première loi de la génétique, qui permet de spécifier entièrement un morceau de texte par lautre texte et cela de façon symétrique.

Cette première loi explique la transmission de l'hérédité au cours des générations, mais la deuxième, beaucoup plus importante et plus abstraite, explique les propriétés innovantes des organismes vivants. Il faut en effet passer de la mémoire à la manipulation, des acides nucléiques aux protéines. Il y a là un processus de traduction. Un premier texte, écrit dans un alphabet à quatre lettres, avec une langue dun certain type fondée sur une chimie spéciale, passe à des morceaux de texte écrits dans un alphabet à vingt lettres, fondée sur une chimie totalement différente. La règle de passage de lun à lautre sappelle le code génétique. Il faut ici une mise en garde. Les journaux affirment souvent : On va déchiffrer le code génétique de tel ou tel organisme. Mais il s'agit là d'une erreur. Le code génétique, cest la même chose que le code quutilisent les enfants pour leurs messages secrets, une règle pour transposer un texte en un autre texte. Il ne s'agit pas du programme de construction des organismes, du programme génétique. Ce code génétique est universel, identique des bactéries à lhomme, ce qui fait qu'on peut prendre des morceaux de mémoire, de programme venant de lhomme, par exemple, et le mettre dans une bactérie et faire produire des protéines humaines par des bactéries. Ce code, cette règle de correspondance entre un niveau et un autre, cest ce que les services secrets appellent le chiffre ou cipher en anglais.

La transposition dun niveau à lautre par un code est originale : lorsquon peut transposer un texte dune langue dans une autre, et lautre étant à la tête dobjets manipulateurs, ces objets peuvent évidemment manipuler le texte de départ. Cela crée une boucle particulière qui permet, par le texte lui-même, de spécifier ce quil reproduira. Le texte peut faire appel à soi-même pour pouvoir engendrer sa descendance. Il peut aussi, comme le font les programmes dordinateur, spécifier tel ou tel type de manipulation dans des environnements variés. Ce fait davoir deux niveaux qui se correspondent à travers un code a une conséquence originale : un système de ce genre peut être parfaitement déterminé, déterministe, et cependant parfaitement imprévisible. Cest surprenant parce que nous avons encore limage des horloges du XVIIIe siècle où lon peut, connaissant létat initial du système, savoir où sera laiguille dans un certain temps, si on connaît la mécanique. Or, les organismes vivants sont ces systèmes matériels qui, en face dun avenir imprévisible, sont construits pour construire de limprévu. Cest fondamental, et cela se manifeste sans avoir besoin de renoncer au déterminisme : on na pas besoin dimaginer pour que se produise de l'imprévu, que le système ait une grande sensibilité à des conditions initiales ou des chose de ce genre. En fait, lidée même davoir une mémoire, l'aptitude à la manipulation et un code entre les deux permet ce genre de propriétés remarquables.
Une première fonction biologique est celle quon appelle la réplication, elle applique la loi de complémentarité : à chacune des quatre lettres du premier texte correspondent quatre lettres du deuxième texte. Cest une règle qui recopie un texte, sans se soucier du contenu sémantique, du sens de ce qui est recopié : on peut fabriquer nimporte quel morceau dADN, ajouter de lADN artificiel, il sera recopié tel quel.

La deuxième fonction, qui correspond au code génétique, se déroule en deux étapes : un premier recopiage dun texte écrit avec un alphabet à quatre lettres dans un autre alphabet à quatre lettres légèrement différent, puis passage à lalphabet à vingt lettres des protéines. Là se fait le changement qui permet, à partir du texte du programme, de fabriquer des objets manipulateurs qui vont manipuler le programme lui-même.
Dans ce type de situation, avec cet ensemble de règles, donc quatre processus et deux lois, dont la loi du code génétique, comment les organismes vivants vont-ils vivre, exister, évoluer ? Il existe en biologie un concept central lié à lidée de relation entre objets, cest le concept de fonction, que vous trouvez peu ou pas en chimie ou en physique. Lorsquon parle dun objet biologique, on sinterroge immédiatement sur sa fonction. Cet objet existe, va réaliser une action, dirigée dans une certaine orientation avec lapparence dun but, dune finalité. Tous les organismes vivants et les objets du vivant sont placés dans un contexte dans lequel, au sein de procédés particuliers de leur expression, de leurs actions, il y a une orientation vers une apparence de but.
On pourrait penser quil y a une vision extérieure à la vie qui lui impose une orientation et un but particulier; et que les organismes vivants sont des systèmes matériels dirigés par lextérieur vers une certaine finalité. Cela a été dit par un grand nombre de pensées religieuses, par exemple, avec une logique interne tout à fait compréhensible. Mais ce nest pas nécessaire ; en réalité, la façon dont les organismes vivants procèdent pour se créer des buts et capturer les objets qui vont permettre davoir les fonctions satisfaisant à ces buts est particulière. Elle a été résumée par François Jacob sous le nom de bricolage . Cest une aptitude à lopportunisme, à faire feu de tout bois, qui fait que les organismes vivants évoluent systématiquement en découvrant, à partir de ce dont ils disposent (puisquils ne peuvent pas créer quelque chose dont ils ne disposent pas), des fonctions nouvelles. Ce qui est particulier dans la vie, cest dêtre capable, à partir de nimporte quoi, de créer des fonctions nouvelles.
Une métaphore permet dillustrer les découvertes récentes et fascinantes sur les fonctions des organismes vivants. Cest lété. Je suis assis à mon bureau. Mon bureau est couvert de papiers. La fenêtre est ouverte derrière moi et je lis un livre. Tout dun coup, le vent se lève. Si les papiers senvolent et se mélangent, ce serait une catastrophe pour moi. Donc, je prends le livre et je le pose sur les papiers. Ce livre vient de découvrir une nouvelle fonction, différente de celle quil avait quand jétais en train de le lire : il est, parce quil est un parallélépipède lourd, un presse-papier. De la même manière, les structures des objets biologiques sont capturées au cours du temps, de façon systématique. Ce qui veut dire dailleurs que, si je découvre le livre et que je dis : Ceci est un livre , je peux me tromper parce que, dans ce contexte particulier, ce nest pas un livre mais un presse-papier. On parle en ce moment des programmes de séquençage de génomes, par exemple, où l'on vous dit quon va avoir des morceaux de texte génomique, dont on va identifier la fonction : Ceci correspond à telle séquence , et l'on dira la fonction. Il s'agit là d'une erreur, liée à lillusion que connaître une collection d'objets suffit à comprendre la biologie.

En fait, les organismes vivants évoluent de la façon suivante. Ce sont des systèmes matériels qui, parce que nous sommes à la température de surface de la Terre, sont soumis aux contraintes thermiques : à cause de ces contraintes, aucun procédé physico-chimique ne peut donner une reproduction strictement identique de ce quil était. Il y a donc des variations au cours de la réplication. Lorsque les organismes vivants produisent de nouveaux organismes vivants qui leur ressemblent, ces nouveaux organismes ne sont pas strictement identiques à lorganisme de départ. Ils sont par ailleurs soumis à des environnements qui, eux, vont choisir, parmi ces variants, certains dentre eux. Cest la sélection, mais cette sélection est un tri passif et non un mécanisme actif. Ce nest pas la sélection du plus apte, comme le disait Spencer, parce quil ny a pas de plus apte. Personne ne sait qui pourrait être le plus apte. Cest dans telle circonstance, à tel moment particulier, que tel organisme a pu survivre, et cest cette survie qui lui a permis dêtre sélectionné. Cest un tri passif, une simple élimination du totalement inapte.
La capacité damplification est le deuxième point fondamental chez les organismes vivants. Si vous faites une expérience de chimie ou même de physique nucléaire et que vous faites des dégâts quelque part, les dégâts sarrêtent et diffusent au cours du temps en diminuant sans cesse. Si vous faites la même chose avec des organismes vivants, ces organismes sont susceptibles de samplifier, de se multiplier, et le cas échéant daugmenter fortement les problèmes quils ont posés. C'est ce qui explique l'inquiétude spontanée du public vis à vis des organismes génétiquement modifiés. Mais il y aurait là matière à développement : le naturel est toujours beaucoup plus dangereux que lartificiel, car il est pré-adapté. Les événements liés au sang contaminé le montrent : le sang est pré-adapté à lhomme et, par conséquent, potentiellement extrêmement dangereux.

Revenons à la genèse des fonctions. Létude de la transparence du cristallin de lSil permet de comprendre comment se créent des fonctions. Le cristallin permet cela vient difficile à partir de 50 ans daccommoder et davoir une image sur la rétine de notre environnement. Cela suppose un ensemble cellulaire, le cristallin, fait de couches cellules, empilées un peu comme des pelures d'oignon, qui s'accumulent au cours de la vie. Cest la raison pour laquelle le cristallin devient de plus en plus gros et de plus en plus difficile à contracter quand on vieillit. Ces cellules ont la particularité dêtre transparentes. Lorsquon a commencé à étudier les protéines, donc ces objets manipulateurs évoqués un peu plus tôt, à lintérieur du cristallin, on sest aperçu que certaines dentre elles sont très concentrées et donc relativement faciles à purifier, à identifier. On les a appelées cristallines et on a étudié leurs propriétés physico-chimiques. On sest aperçu quelles ont la transition vitreuse : elles sont suffisamment désordonnées pour ne pas privilégier une direction particulière de la lumière. Elles se comportent exactement comme le verre.

Puis sont venus des programmes de séquençage. On a commencé par séquencer des gènes individuellement avant de séquencer les collections de gènes que représente le génome. On a commencé à regarder une de ces cristallines et on sest aperçu quon la connaissait déjà, quelle ressemblait, à sy méprendre, à quelque chose qui navait rien à voir, une enzyme, par exemple, une lactate déshydrogénase, qui a une activité métabolique particulière. On l'a mise en présence du substrat du métabolisme en question et on sest aperçu que cest une enzyme, mais qui marche dans lSil non pas avec cette fonction denzyme, mais avec la fonction : Je suis transparente quand je suis concentrée. On a aussi découvert autour de ces cristallines dautres protéines, les chaperons moléculaires . Ce sont des protéines qui jouent le rôle déchafaudage, qui permettent de remettre en forme des objets qui se sont défaits, qui ont perdu leur forme. Ils ont été appelés chaperons parce quils accompagnaient comme les chaperons les protéines quon purifiait, on les trouvait toujours associés à ces protéines. Ces chaperons moléculaires ont cette particularité de permettre la remise en forme des protéines dénaturées, ce qui a un intérêt considérable pour lSil. Au cours de lâge, nous risquons tous dêtre atteints de cataracte. LSil perd sa transparence car les cristallines, au cours du temps, se dénaturent et les chaperons moléculaires ne fonctionnent pas toujours assez bien pour les renaturer. Mais si on y réfléchit, pendant la durée dune vie humaine, un objet soumis au rayonnement que nous avons dans les yeux reçoit des quantités énormes de rayons ultraviolets qui dénaturent en permanence les protéines du cristallin : sans ces chaperons, la cataracte apparaîtrait beaucoup plus tôt. On sest aperçu quil y avait beaucoup dautres éléments que ces protéines et ces chaperons moléculaires. Or, dans un tout autre domaine, des chercheurs ont découvert que, lorsque des cellules sont soumises à un choc thermique, ce qui est fréquent, la plupart des protéines réagissent mal. Un ensemble particulier de protéines sert de remède à cette situation difficile. Au cours de lévolution, les cristallins se sont inventés une première fonction, en capturant la fonction dun ensemble de protéines, les protéines de résistance aux chocs (au choc thermique ou au choc acide, dans un très grand nombre de cas). Cet ensemble contient un certain nombre de protéines, qui sont justement les protéines quon trouve dans le cristallin, et évidemment ces chaperons moléculaires. Dans une cellule de peau, par exemple, vous avez ces protéines. Si vous vous brûlez, elles vont être mises en jeu, parce quon a un système de contrôle qui va décider immédiatement : il faut faire la synthèse de ces protéines, puis larrêter. Dans le cristallin, la perte du système de contrôle la rendu ce quon appelle constitutif, cest-à-dire quil marche en permanence. Cest donc la perte du système de contrôle qui a en permanence rempli la cellule dun certain jeu de protéines. En général, cela na pas dintérêt. Il se trouve que, pour un cristallin, cest-à-dire un organe situé au dessus d'un ensemble de cellules sensibles comme la rétine, cela a un intérêt. On voit comment au cours de lévolution, on a sélectionné, capturé cest exactement lhistoire du livre presse-papier ce type de fonction. Mais la transparence peut avoir dautres fonctions. Un petit poisson dans leau est mangé, en général par un prédateur. Si, par chance, un certain nombre daccidents génétiques ont fait que certaines de ses cellules, dans un ensemble collectif suffisant, ont exprimé en permanence cet ensemble de protéines, tout dun coup il devient transparent, sauf son squelette. On a là le même type de capture d'une fonction préexistante, mais pour une fonction tout à fait différente, le déguisement.
Un dernier exemple permet de reconsidérer limage mécaniste que nous avons de la vie en général et de lhomme en particulier.

Beaucoup de gens sinquiètent avec raison de lusage quon peut faire du programme de séquençage du génome humain. En particulier, il est évident quidentifier les caractéristiques génétiques permet de dresser une carte dun certain nombre de propriétés générales des individus et permet den faire une classification. On peut domestiquer lhomme comme on domestique les animaux. On peut sinquiéter, mais heureusement, d'une certaine manière, cest une absurdité. Lidée de connaître un génome et de prédire le destin des individus supposerait quil y ait une correspondance mécanique entre la nature du génome et la nature de lindividu. Or, le mécanisme qui fait que les fonctions capturent des structures est imprévisible, par construction. La situation particulière durgence dans laquelle va être placé un individu, qui fera que la descendance de cet individu aura survécu parce quelle aura trouvé telle solution, est imprévisible. La sélection des nouvelles fonctions, cest-à-dire à la fois leur création et leur sélection, est complètement impossible à prévoir.

Lidée même deugénisme na pas de sens. On peut avoir lidée de faire des gens extrêmement agressifs : on fait des chiens extrêmement agressifs, des grands, des petits, des poilus, aucune problème. Mais décider de ce qui fait lhumanité de lhomme, de ce qui fait, en particulier, ses capacités créatrices ou de ce quil serait un homme meilleur, un homme idéal, est une absurdité parce que cest, par construction, impossible. Un exemple permet dillustrer cette absurdité.
Lorsque la vie est apparue, il y a 3 milliards 800 millions dannées à peu près, la Terre était vaste et peu occupée par des organismes vivants. Les premiers organismes ont eu énormément de place pour se multiplier. Ils navaient pas à prendre en compte les autres. Le but des organismes vivants est le même que le but de tout système physique : occuper le plus possible despace et détat, occuper tout, avec les moyens dont ils disposent. Un moyen rapide, cest de faire un autre soi-même, de se multiplier. Mais cela ne dure quun temps, car tout dun coup, il faut commencer à prendre en compte lautre. La manière brutale et habituelle, efficace au premier degré, cest de sen débarrasser, le manger et prendre sa place. La première fonction à créer est une sonde, un capteur qui vous dit : Cet autre me ressemble ou ne me ressemble pas. Deuxième fonction : il va falloir utiliser ce capteur pour tuer lautre. Le capteur doit avoir des relais, qui doivent contrôler la synthèse d'un certain nombre de produits toxiques qui vont être ensuite libérés dans lenvironnement de façon à détruire lautre, qui va ensuite être mangé. Ce sont des antibiotiques, inventés ainsi par les bactéries extrêmement tôt. Il y en a dailleurs une grande variété. Cependant la bactérie qui produit les antibiotiques a des petits problèmes, puisquil ne faut pas quelle se tue elle-même. Il faut quelle crée un système dimmunité contre ses propres missiles. Cest un système qui existe, extrêmement répandu dans la nature. Voilà un premier ensemble de fonctions : capteurs, cascade de régulations, sécrétions, immunité. Ensuite, petit à petit, dans la prise en compte de lautre, il y a la coopération, le parasitisme, des relations déquilibre face aux prédateurs, toute une variété de possibilités ; mais il y en a une qui a été inventée plus tard, probablement il y a un milliard dannées, qui est de se mettre ensemble, cest-à-dire faire des organismes multicellulaires. Là se créent de nouvelles fonctions. Créer un organisme multicellulaire amène des contraintes particulières dans lenvironnement, quil faut gérer. Il faut éventuellement une tête, une queue, il y a des problèmes de symétrie, toute une série de problèmes nouveaux à régler pour lesquels il faut inventer des fonctions.

Ainsi petit à petit se sont créés des organismes de plus en plus compliqués, jusqu'aux insectes ou à lhomme. Dans le cas des insectes, par exemple, on sest interrogé récemment sur la façon dont les insectes résistent aux microbes. Ont-ils un mécanisme de défense ? On a injecté des microbes dans les insectes ; quand on injecte un champignon à la mouche drosophile, il se crée une cascade du type juste décrit : un capteur reconnaît le champignon, crée son antibiotique, quon a appelé, de façon appropriée, la drosomycine. On a par ailleurs, au cours des analyses de gènes et de génome, la possibilité de reconnaître les gènes assez facilement : aussi, lorsquon a un produit, lorsquon a une cascade dévénements de ce genre, on peut repérer les gènes correspondants et savoir quels ils sont, où ils se trouvent dans les chromosomes et repérer lensemble de la mécanique correspondante. Or, on sest aperçu quon connaissait déjà cette cascade particulière de résistance. Elle avait été découverte ailleurs, dans un contexte différent, avec une fonction différente. Il sagit dune cascade qui est éveillée transitoirement au cours de la différenciation de lembryon de la larve de la mouche pour en déterminer laxe dorso-ventral, cest-à-dire la position du dos par rapport à la position du ventre. Cette cascade, ce très ancestral mécanisme de fabrication dantibiotiques, a été capturé par les organismes multicellulaires pour déterminer la forme lindividu ! Extrapolons : nous avons des systèmes immunitaires ; si nous survivons aujourdhui, ce nest pas à cause de notre intelligence mais simplement parce que nos ancêtres ont résisté à la peste, au choléra et à la variole. Nous avons un grand ensemble de systèmes immunitaires fonctionnels. On peut alors imaginer que le fait aujourdhui dêtre mis en face dune nouvelle maladie décide de la forme de nos descendants futurs ! C'est typiquement cela qui interdit toute idée possible de pensée eugénique.
Quelques éléments encore nous montreront comment se construisent les organismes vivants. Lordre des gènes dans les chromosomes, le génome, nest pas un hasard, mais est directement lié à larchitecture de la cellule, cest-à-dire quil y a un lien entre la forme du programme et la forme de la cellule. Cela est connu depuis un certain temps chez les organismes multicellulaires. Chez les insectes, on saperçoit que les gènes qui contrôlent les différents éléments du corps sont ordonnés exactement dans le même ordre, de la tête à la queue. Si on prend, par exemple, un de ces gènes et quon le déplace à un autre endroit, on va déplacer les organes correspondants. On peut faire des mouches dans lesquelles on met une patte à la place dune antenne, simplement en déplaçant un de ces gènes. Il y a donc un programme fait de façon modulaire, qui dit séquentiellement comment se font les choses. Si vous comparez les insectes ou nous-mêmes, et les crustacés, vous verrez que le nerf central dans le dos passe sur le ventre et inversement. Chez nous, on a juste une colonne vertébrale dans le dos et tout reste dans le ventre. On sest aperçu que cétait effectivement le même plan chez les crustacés, mais quil y avait deux gènes qui étaient inversés, ce qui inverse le plan dos-ventre chez un animal comme le homard, par rapport à la mouche ... ou à l'homme.
La dernière découverte, qui fait de la mouche lun des modèles de lhomme, est que, chez certains animaux, en particulier chez les mammifères, le plan est le même que celui de la mouche drosophile, exactement dans le même ordre, mais simplement la construction de lhomme est réglée par un quatuor : au lieu dêtre une seule partition quon jouerait une seule fois, on a quatre partitions côte à côte, simultanées, qui déterminent nos segments, car nous sommes segmentés. Il suffit de regarder ses vertèbres et ses côtes pour sen rendre compte. Nous sommes segmentés, mais cela se voit moins parce que, comme dans un quatuor, la partition se déploie : nous avons ainsi des vertèbres qui deviennent tout à fait déformées, qui vont faire une tête, par exemple. On retrouve, malgré tout, à nouveau cette idée dun plan et dune organisation générale.

En résumé, on peut considérer que les organismes vivants sont construits à partir dun programme, que ce programme est très lié à larchitecture générale des organismes, mais il ne faut jamais oublier que ce programme a la particularité, par construction, même en restant strictement déterministe, de créer systématiquement de limprévu.

 

  VIDEO       CANAL  U         LIEN 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google