|
|
|
|
|
|
LES ARGILES MARTIENNES |
|
|
|
|
|
Paris, 7 SEPTEMBRE 2012
Les argiles martiennes n'ont pas toutes été formées par l'action de l'eau liquide
Découvertes en 2005, les argiles de l'hémisphère sud de Mars sont souvent considérées comme une preuve de l'existence d'eau liquide sur la planète rouge à une époque très reculée comprise entre 4,5 et 4 milliards d'années. Mais les travaux d'une équipe franco-américaine menés par des chercheurs de l'Institut de chimie des milieux et matériaux de Poitiers (CNRS/ Université de Poitiers)1 remettent en cause cette interprétation. Dans un article à paraître le 9 septembre sur le site de la revue Nature Geosciences, ils montrent que ces argiles ont vraisemblablement une origine magmatique. Les nombreuses similitudes entre les argiles martiennes et celles d'origine volcanique récoltées sur l'atoll de Mururoa soutiennent leur hypothèse.
Sur l'hémisphère Sud de Mars se trouvent les roches les plus anciennes de la planète : la croûte de cette région s'est formée il y a entre 4,5 et 4 milliards d'années. C'est là qu'ont été découvertes, en 2005, des argiles riches en fer et en magnésium. La présence de ce type de minéraux, considérés comme issus de la décomposition de roches par l'action de l'eau liquide, laissait penser que cette dernière était présente sur la surface martienne dès cette époque reculée. Or, une équipe de chercheurs vient de montrer que l'origine de ces argiles est très probablement magmatique.
Pour étayer leur hypothèse, les chercheurs ont étudié les basaltes de l'atoll de Mururoa (Polynésie Française). Ces basaltes sont constitués de cristaux bien formés limitant de petits espaces remplis d'un matériau finement cristallisé appelé la mésostase. Celle-ci contient des argiles ferro-magnésiennes similaires à celles détectées sur Mars. Les chercheurs ont montré que ces argiles se sont formées à partir de liquides magmatiques résiduels riches en eau, piégés dans les espaces libres entre les cristaux. À la fin du refroidissement du magma, les constituants de ces fluides résiduels ont précipité formant ainsi divers minéraux, dont les argiles. Aucune altération aqueuse dans ce cas.
Les scientifiques ont remarqué que le magma martien réunissait toutes les conditions, en particulier une haute teneur en eau et en chlore, pour que ce processus ait pu produire des argiles en abondance sur la surface basaltique de Mars. Par ailleurs, on sait que peu après sa formation, Mars, tout comme la Terre primitive, était recouvert d'un océan magmatique. Durant cette période, les argiles ont pu se former. Mais ce n'est pas tout : ils ont aussi montré que le spectre infrarouge des argiles martiennes mesuré par les orbiteurs Mars Express et Mars Reconnaissance Orbiter, est identique à celui des argiles de Mururoa.
Ces travaux pourraient avoir des conséquences sur la recherche de marqueurs de la vie sur Mars. En effet, si la présence d'eau liquide aux alentours de -3 milliards d'années est avérée par les traces de rivières, lacs et cônes alluviaux, rien ne suggère qu'elle ait pu exister à des périodes aussi reculées que -4,5 ou -4,0 milliards d'années, comme on a pu le croire jusqu'à présent. La période de temps favorable à l'émergence de la vie sur Mars pourrait avoir été beaucoup plus courte que prévu. La mission Curiosity, qui va explorer sur Mars une partie du cratère Gale dont les formations sédimentaires témoignent de la présence de l'eau liquide à une époque beaucoup plus récente, devrait permettre de lever un certain nombre d'incertitudes.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
ONDES GRAVITATIONNELLES |
|
|
|
|
|
Paris, 28 octobre 2013
Le « leviton », une onde électronique silencieuse
Des physiciens du CEA et du CNRS1 ont réussi à injecter quelques électrons dans un conducteur sans que ceux-ci y apportent de perturbation. Ce résultat a été possible grâce à la génération d'impulsions électriques à profil temporel « lorentzien » ultra-court. L'onde quantique électronique obtenue, baptisée par les chercheurs « leviton », se propage sans bruit et sans déformation comme le font certaines ondes solitaires optiques ou hydrodynamiques connues (solitons). Ces travaux ouvrent la voie à l'utilisation de sources d'électrons « à la demande », simples et fiables, utiles à terme pour des applications en physique et en information quantique.
Ces résultats2 sont publiés le 31 octobre dans l'édition papier de la revue Nature.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
PHYSIQUE QUANTIQUE |
|
|
|
|
|
Paris, 21 septembre 2011
Première traversée en solitaire d'un électron dans un métal
Quiconque chercherait à traquer un électron dans un métal serait bien en peine : les électrons sont non seulement des particules indiscernables les unes des autres, mais ils ont tendance à se déplacer en groupe dans les métaux. Pourtant, c'est bien la traversée solitaire d'un électron dans un tel matériau qu'ont réussi à observer et à maîtriser des physiciens de l'Institut Néel (CNRS) à Grenoble. Pour débusquer le phénomène, les chercheurs ont fabriqué un dispositif expérimental à base de « boîtes quantiques », entre lesquelles un unique électron a littéralement surfé sur une onde sonore. Une première qui pourrait sonner le début de la téléportation du spin d'un électron et de l'ordinateur quantique. Ces travaux sont publiés dans la revue Nature le 22 septembre 2011.
Les boîtes quantiques sont le premier élément clé du dispositif conçu par les physiciens grenoblois, en collaboration avec les universités de Tokyo et de Bochum, en Allemagne. Circuits électroniques de plus en plus répandus dans les laboratoires de physique, les boîtes quantiques sont des sortes de pièges microscopiques à électrons. C'est-à-dire qu'on sait, via un fil électrique afférent, y glisser un par un des électrons. Les chercheurs de Grenoble ont placé deux de ces boîtes aux extrémités d'un canal sculpté dans une fine couche d'or (elle-même superposée à un sandwich constitué d'un isolant, de l'arséniure de gallium et d'un métal). La première boîte sert à libérer un électron dans le canal. La seconde, à récupérer la particule à l'autre bout, 3 microns plus loin.
Mais pour rendre possible cette traversée au long cours d'un électron, encore fallait-il aux physiciens imaginer un moyen de propulser l'électron d'une boîte quantique à l'autre. Un rôle dévolu à un générateur d'ondes radio, pièce essentielle de l'expérience. En émettant des ondes radio, le générateur produit par effet piézoélectrique (la capacité d'un matériau à se déformer en présence d'un champ électromagnétique) des ondes sonores dans l'arséniure de gallium. Ces ondes se comportent alors comme des vagues qui poussent l'électron le long du canal, un « surf » version électronique. En inventant ce mode de propulsion inédit, les scientifiques ont fait de l'électron un navigateur solitaire.
Au-delà de la performance expérimentale, le « surf électronique » donne des pistes en physique fondamentale pour généraliser les expériences d'optique quantique à d'autres particules que les photons. Pour l'instant, les grains de lumière sont en effet les seules particules à s'être prêtées à la téléportation et à la cryptographie quantiques. L'obstacle pour utiliser des électrons était précisément la difficulté à les déplacer individuellement entre boîtes quantiques (les briques de bases qu'on envisage pour ce type de physique). En faisant sauter ce verrou, le surf sur ondes sonores est un pas vers la téléportation du spin d'un électron, la cryptographie quantique à base d'électrons et l'ordinateur quantique.
|
|
|
|
|
|
|
LES PROTONS |
|
|
|
|
|
DOCUMENT CNRS LIEN
Paris, 20 juin 2005
Les quarks étranges, fugitifs constituants des protons
La collaboration internationale G-zéro, à laquelle le CNRS-IN2P3 (1) contribue très largement, vient de montrer que les quarks étranges jouent un rôle dans la structure des protons et des neutrons, les constituants des noyaux atomiques. Cette découverte est une étape importante dans la compréhension de l'interaction forte, l'une des quatre forces fondamentales qui régissent l'Univers.
Les protons et les neutrons, qui s'assemblent pour former les noyaux atomiques, ont longtemps été considérés comme les constituants ultimes de la matière. Mais dans les années 1970, les physiciens ont montré qu'ils étaient en réalité eux-mêmes constitués de particules plus élémentaires, les « quarks » (porteurs d'une charge électrique). Plus précisément, ils sont faits de l'assemblage de quarks up et down (les deux quarks les plus légers, parmi les six existant dans l'Univers).
Ces quarks up et down sont liés par l'interaction forte : plus on cherche à éloigner deux quarks, plus ils s'attirent. Les quarks ne peuvent pas être extraits des protons ou des neutrons et observés à l'état libre. Pour rendre compte de ce nouvel état de fait, les physiciens ont construit une théorie, appelée la chromodynamique quantique (dont les auteurs ont reçu le prix Nobel en 2004). Cette théorie prévoit que protons et neutrons ne sont pas constitués des seuls quarks up et down, mais également d'une « mer » de paires quark/anti-quark, dont ceux de type « étrange », produites durant une fraction de seconde par l'interaction forte entre quarks up et down. Les quarks étranges de cette mer, les plus légers après les quarks up et down, peuvent se matérialiser fréquemment et influer sur les propriétés globales du proton. La mesure d'un tel effet sur les distributions de charges et de moments magnétiques à l'intérieur du proton est en cours depuis une décennie.
Dans ce cadre, une centaine de physiciens issus d'une vingtaine de laboratoires se sont rassemblés au sein d'une collaboration internationale, nommée G-zéro. Ils travaillent avec un accélérateur d'électrons au Laboratoire Thomas Jefferson (JLab), situé à Newport-News, en Virginie (aux Etats-Unis). Une quinzaine de physiciens français, appartenant à deux laboratoires du CNRS-IN2P3, le Laboratoire de physique subatomique et de cosmologie de Grenoble (2) et l'Institut de physique nucléaire d'Orsay (3), font partie de la collaboration G-zéro. Depuis 1998, grâce au soutien financier de l'IN2P3 (600 000 euros sur trois ans), ils ont construit avec leurs équipes techniques la moitié des détecteurs de l'expérience, ainsi que l'électronique associée. Ils ont ensuite participé aux phases de validation de tout l'ensemble expérimental, puis à l'enregistrement et à l'analyse des données.
L'expérience réalisée par la collaboration G-zéro au JLab est conçue pour observer les distributions de charges et de moments magnétiques dans les protons, un peu comme on observe la structure interne du corps humain par radiographie X. Pour observer le proton à son échelle (10-15 mètre), les physiciens utilisent des faisceaux d'électrons d'une énergie de plusieurs milliards d'électrons-volts (plus les objets à observer sont petits, plus l'énergie nécessaire est grande). La qualité des faisceaux et des ensembles de détection représente une prouesse technique. Avec ces instruments, la collaboration G-zéro a réussi à mettre en évidence l'influence des quarks étranges, malgré leur apparition fugitive, sur les distributions des charges et des moments magnétiques à l'intérieur des protons. De façon générale, la connaissance de cette distribution aidera les physiciens à comprendre comment l'interaction forte crée une « mer » de particules. Ce résultat est donc important pour la compréhension générale de l'interaction forte, qui régit les comportements du monde subatomique, notamment la construction d'objets aussi fondamentaux que les protons et les neutrons, et pour sa description dans le cadre de la théorie de la chromodynamique quantique.
L'année prochaine, la collaboration G-zéro entame sa seconde phase, avec la construction par le Laboratoire de physique subatomique et de cosmologie de Grenoble d'un appareillage supplémentaire pour améliorer le détecteur. L'objectif est de parvenir d'ici deux ou trois ans à une cartographie du rôle des quarks étranges, et ceci sur les distributions à la fois de charge et de moment magnétique dans les protons et les neutrons.
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] Précédente - Suivante |
|
|
|
|
|
|