ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

L'ÉNERGIE OSMOTIQUE

 

Paris, 27 février 2013


Energie renouvelable : des nanotubes pour tirer le meilleur de l'énergie osmotique


La différence de salinité entre l'eau douce et l'eau de mer est l'une des voies explorées pour obtenir de l'énergie renouvelable. Néanmoins, les faibles rendements des techniques actuelles constituent un frein à son utilisation. Ce verrou pourrait être en train d'être levé. Une équipe menée par des physiciens de l'Institut Lumière Matière (CNRS / Université Claude Bernard Lyon 1), en collaboration avec l'Institut Néel (CNRS), a découvert une nouvelle piste pour récupérer cette énergie : l'écoulement osmotique à travers des nanotubes de Bore-Azote permet de générer un courant électrique géant avec une efficacité plus de 1 000 fois supérieure à celle atteinte jusqu'ici. Pour parvenir à ce résultat, les chercheurs ont développé un dispositif expérimental très original permettant, pour la première fois, d'étudier le transport osmotique des fluides à travers un nanotube unique. Leurs résultats sont publiés le 28 février dans la revue Nature.
Les phénomènes osmotiques se manifestent lorsque l'on met en contact un réservoir d'eau salée avec un réservoir d'eau douce par l'intermédiaire de membranes semi-perméables adaptées. Il est alors possible de produire de l'électricité à partir des gradients salins. Ceci, de deux façons différentes : d'un côté, la différence de pression osmotique entre les deux réservoirs peut faire tourner une turbine ; de l'autre, l'utilisation de membranes qui ne laissent passer que les ions permet de produire un courant électrique.

Concentrée au niveau des embouchures des fleuves, la capacité théorique de l'énergie osmotique au niveau mondial serait d'au moins 1 Térawatt, soit l'équivalent de 1000 réacteurs nucléaires. Cependant, les technologies permettant de récupérer cette énergie présentent d'assez faibles performances, de l'ordre de 3 Watts par mètre carré de membrane. Les physiciens de l'Institut Lumière Matière (CNRS / Université Claude Bernard Lyon 1), en collaboration avec l'Institut Néel (CNRS), pourraient être parvenus à lever ce verrou.

Leur but premier était d'étudier la dynamique de fluides confinés dans des espaces de taille nanométrique tels que l'intérieur de nanotubes. En s'inspirant de la biologie et des recherches sur les canaux cellulaires, ils sont parvenus, pour la première fois, à mesurer l'écoulement osmotique traversant un nanotube unique. Leur dispositif expérimental était composé d'une membrane imperméable et isolante électriquement. Cette membrane était percée d'un trou unique par lequel les chercheurs ont fait passer, à l'aide de la pointe d'un microscope à effet tunnel, un nanotube de Bore-Azote de quelques dizaines de nanomètres de diamètre extérieur. Deux électrodes plongées dans le liquide de part et d'autre du nanotube leur ont permis de mesurer le courant électrique traversant la membrane.

En séparant un réservoir d'eau salée et un réservoir d'eau douce avec cette membrane, ils ont généré un courant électrique géant à travers le nanotube. Celui-ci est dû à l'importante charge négative que présentent les nanotubes de Bore-Azote à leur surface, charge qui attire les cations contenus dans l'eau salée. L'intensité du courant traversant le nanotube de Bore-Azote est de l'ordre du nanoampère, soit plus de mille fois celui produit par les autres méthodes cherchant à récupérer l'énergie osmotique.

Les nanotubes de Bore-Azote permettent donc de réaliser une conversion extrêmement efficace de l'énergie contenue dans les gradients salins en énergie électrique directement utilisable. En extrapolant ces résultats à une plus grande échelle, une membrane de 1 mètre carré de nanotubes de Bore-Azote aurait une capacité d'environ 4 kW et serait capable de générer jusqu'à 30 MegaWatts.heure 1 par an. Ces performances sont trois ordres de grandeur au-dessus de celles des prototypes de centrales osmotiques en service aujourd'hui. Les chercheurs veulent à présent étudier la fabrication de membranes composées de nanotubes de Bore-Azote, et tester les performances de nanotubes de composition différente.

 

DOCUMENT              CNRS                  LIEN

 
 
 
 

UN SUPERCONDENSATEUR

 

Paris, 17 février 2013


Explorer la structure d'un supercondensateur… et l'améliorer !


En freinant, le bus le recharge et à l'arrêt, il peut fournir l'électricité permettant d'ouvrir les portes du bus : voilà une des utilisations du supercondensateur ! Bien qu'utilisé dans la vie courante, cet appareil de stockage de l'électricité a une organisation et un fonctionnement moléculaires qui n'avaient jamais été observés jusqu'à aujourd'hui. Des chercheurs du CNRS et de l'Université d'Orléans ont exploré pour la première fois les réarrangements moléculaires à l'œuvre dans des supercondensateurs commerciaux en fonctionnement. Le procédé imaginé par les scientifiques offre une nouvelle clé pour optimiser et améliorer les supercondensateurs du futur. Ces résultats sont publiés le 17 février 2013 sur le site de la revue Nature Materials.
Les supercondensateurs sont des appareils de stockage de l'électricité différents des batteries. Contrairement à ces dernières, leur charge est beaucoup plus rapide (le plus souvent en quelques secondes) et ils ne subissent pas d'usures aussi rapides liées aux charges/décharges. En revanche, à taille égale et bien qu'offrant une plus grande puissance, ils ne peuvent pas stocker autant d'énergie électrique que les batteries (les supercondensateurs à base de carbone fournissent une densité d'énergie d'environ 5 Wh/Kg et les batteries lithium-ion de l'ordre de 100 Wh/kg). On retrouve les supercondensateurs dans la récupération de l'énergie de freinage de nombreux véhicules (voitures, bus, trains), ou encore pour assurer l'ouverture d'urgence de l'avion A380.

Un supercondensateur stocke l'électricité grâce à l'interaction entre des électrodes en carbone nanoporeux et des ions, porteurs des charges positives et négatives, qui se déplacent dans un liquide appelé électrolyte (voir schéma explicatif ci-dessous). Lors de la charge, les anions (ions chargés négativement) sont remplacés par des cations (ions chargés positivement) dans l'électrode négative et inversement. Plus cet échange est important et plus la surface de carbone disponible est élevée, plus la capacité du supercondensateur grandit.

Grâce à la spectroscopie par Résonance magnétique nucléaire (RMN), les chercheurs sont allés plus loin dans cette description et chose unique, ils ont pu quantifier dans quelle proportion se font les échanges de charges sur deux supercondensateurs utilisant des carbones commerciaux. En comparant deux carbones nanoporeux, ils ont pu ainsi mettre en avant que le supercondensateur comportant le carbone avec une structure la plus désordonnée offrait une meilleure capacité et une meilleure tolérance aux tensions les plus élevées. Ceci serait dû à une meilleure répartition des charges électroniques au contact des molécules de l'électrolyte.

Ces résultats sont le fruit de la collaboration de deux équipes orléanaises : l'une au CEMHTI1 du CNRS, spécialiste de la RMN et membre du Réseau français sur le stockage électrochimique de l'énergie (www.energie-rs2e.com), l'autre au Centre de recherche sur la matière divisée (CNRS/Université d'Orléans), qui est centrée sur l'étude de nouveaux matériaux carbonés pour les supercondensateurs. Cette complémentarité permet aujourd'hui la mise au point d'une technique qui offre tant aux laboratoires de recherche qu'aux entreprises un véritable outil pour l'optimisation des matériaux du supercondensateur.

 

DOCUMENT              CNRS                LIEN

 
 
 
 

UN SUPERCOURANT À TRAVERS UN ATOME

 

Paris, 17 juillet 2013


Du supercourant à travers un atome


Un supercourant peut traverser un contact constitué d'un seul atome entre deux électrodes supraconductrices. Une expérience de spectroscopie, réalisée par le Service de physique de l'état condensé (CEA/CNRS), a mis en évidence les états quantiques électroniques qui transportent ce supercourant. L'expérience, d'une portée générique pour l'électronique supraconductrice, est décrite dans la revue Nature du 18 juillet.

 

DOCUMENT                  CNRS                LIEN

 
 
 
 

LES DELs

 

Paris, 25 avril 2013


Pourquoi les DELs perdent leur efficacité lumineuse lorsque l'intensité du courant augmente


Le mystère de la diminution du rendement des diodes électro-luminescentes (DELs) vient d'être résolu par une équipe du Laboratoire de physique de la matière condensée (CNRS/ École polytechnique), en collaboration avec l'Université de Californie à Santa Barbara. Ce phénomène constitue un verrou limitant l'expansion de ces sources de lumière efficaces et économes en énergie. L'équipe franco-américaine vient de montrer que dans une DEL, l'énergie électrique ne sert pas uniquement à émettre de la lumière, mais qu'elle contribue également à exciter des électrons dans la matière. Ces travaux, publiés le 25 avril 2013 dans la revue Physical Review Letters, pourraient permettre de contrer cet effet pour obtenir des DELs plus performantes, fournissant une intensité lumineuse beaucoup plus importante.
L'efficacité d'une DEL correspond à son rendement de transformation de l'énergie électrique en lumière. Or, les chercheurs savent que, lorsque l'intensité du courant qui traverse la DEL dépasse un certain seuil, son efficacité diminue. De ce fait, pour maintenir un rendement élevé, les DELs fabriquées commercialement fonctionnent à des densités de courant relativement faibles. Elles sont, par conséquent, à l'unité, moins intenses que d'autres sources de lumière pourtant moins efficaces, comme les lampes à incandescence. Pour obtenir des intensités lumineuses fortes, les industriels doivent accumuler les DELs dans chaque lampe, ce qui augmente considérablement les coûts. Le phénomène de diminution de l'efficacité des DELs constitue donc un frein important à leur expansion dans des domaines tels que l'illumination d'environnements industriels.  

Lorsqu'un courant électrique traverse une DEL, des paires électron-trou1 sont injectées dans la structure. Des photons sont émis lorsqu'une paire électron-trou se recombine et cède son énergie en émettant de la lumière. C'est ainsi que s'opère la conversion de l'énergie électrique en lumière, dont malheureusement  l'efficacité diminue lorsque l'intensité du courant dépasse un certain seuil. Cette baisse était connue depuis 1999, mais son origine demeurait incertaine. L'équipe franco-américaine vient de montrer de façon directe que l'effet Auger est le principal responsable de cette diminution.

L'effet Auger se manifeste lorsque la densité d'électrons traversant le semi-conducteur est grande. Alors, une paire électron-trou peut ne pas se recombiner en émettant un photon, mais en excitant un deuxième électron sous forme d'énergie cinétique. Ce dernier est appelé électron Auger. Son énergie excédentaire est dissipée sous forme de chaleur. Pour observer l'effet Auger, les chercheurs ont fait passer un courant dans une DEL, puis mesuré l'énergie des électrons après leur émission dans le vide. Ils ont ainsi observé des pics d'électrons à énergie élevée qui apparaissent dès que le seuil de diminution d'efficacité d'émission lumineuse de la DEL est atteint et dépassé. Ces électrons énergétiques correspondent aux électrons Auger. Cette expérience rappelle celle de Heinrich Hertz en 1887 menant à la découverte de l'effet photoélectrique, effet expliqué en 1905 par Einstein par la quantification de la lumière sous forme de quanta de lumière, les photons.

Cette première preuve expérimentale de l'effet Auger dans une diode électroluminescente devrait lancer les recherches pour tenter d'enrayer ce phénomène et éviter la diminution de l'efficacité des DELs. Ceci devrait permettre d'obtenir des DELs beaucoup plus lumineuses, capables de remplacer toutes les sources de lumière des environnements commerciaux et industriels, y compris les tubes néon. L'enjeu est considérable, puisque l'on pourrait ainsi économiser environ 50% de l'électricité utilisée pour l'éclairage, secteur qui représente entre 15 et 22% de la consommation électrique totale suivant les pays.

 

DOCUMENT              CNRS              LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google