ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

Les « séquences enchevêtrées » : un mécanisme indispensable à la formation de la mémoire

 

 

 

 

 

 

 

Les « séquences enchevêtrées » : un mécanisme indispensable à la formation de la mémoire

COMMUNIQUÉ | 12 NOV. 2018 - 18H13 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE

Une équipe de recherche du CNRS, de l’Université PSL, du Collège de France et de l’Inserm vient de lever une part du voile qui entoure encore l’activité du cerveau pendant notre sommeil.  Si l’on sait que certains neurones se réactivent à ce moment pour consolider nos souvenirs, on ignorait encore comment ces cellules pouvaient se « souvenir » de l’ordre dans lequel s’allumer. Les chercheurs ont découvert que la réactivation des neurones durant le sommeil repose sur une activation qui a lieu au cours de la journée : les séquences thêta « enchevêtrées ». Leurs résultats sont publiés le 9 novembre 2018 dans Science.

La répétition est la meilleure méthode de mémorisation, pour les neurones eux-mêmes. C’est le principe de ce que les neurobiologistes nomment réactivations de séquences : durant le sommeil, les neurones de l’hippocampe liés à une tâche s’activent très rapidement à tour de rôle dans un ordre précis, ce qui consolide le souvenir de cette tâche. Les réactivations de séquences sont fondamentales pour la mémorisation à long terme et les échanges entre l’hippocampe et le reste du cerveau. Présentes seulement au repos, elles apparaissent donc après l’activité initiale des neurones, ce qui sous-entend qu’ils « mémorisent » dans quel ordre s’allumer. Mais par quel mécanisme ?

Une équipe de chercheurs du Centre interdisciplinaire de recherche en biologie (CNRS/Inserm/Collège de France)1 vient de répondre à cette question en étudiant chez des rats les séquences d’activité de leurs cellules de lieu. Celles-ci sont des neurones de l’hippocampe qui s’allument en suivant la position de l’animal dans l’environnement lorsqu’il se déplace. Lentement d’abord, pendant qu’il effectue son déplacement, puis très rapidement lors des réactivations de séquences au cours du sommeil. Mais les neurobiologistes connaissent un autre type de séquences, appelées séquences thêta, qui répètent rapidement l’activation des mêmes cellules de lieu lorsque l’animal se déplace, en parallèle des séquences lentes. Ces séquences thêta sont donc dites « enchevêtrées ».

Lentes ou enchevêtrées, lesquelles de ces séquences sont nécessaires à l’apparition des réactivations de séquences, et permettent donc la consolidation des souvenirs pendant le sommeil ? Les chercheurs l’ont découvert grâce à un système ingénieux qui désactive les séquences enchevêtrées, sans toucher aux séquences lentes : les animaux sont transportés sur un train électrique, dans un wagon muni d’un tapis roulant (voir Image). Lorsque le tapis est à l’arrêt, les séquences enchevêtrées disparaissent, et celles-ci reviennent quand le tapis fonctionne.
Les chercheurs ont alors pu observer qu’après plusieurs tours en train avec le tapis roulant à l’arrêt, les cellules de lieu de l’hippocampe des rats ne se réactivent pas au cours du sommeil dans le même ordre que pendant l’éveil. Au contraire, après un trajet en train avec le tapis en marche, les réactivations de séquences sont bien présentes. Ainsi, ce sont les séquences thêta enchevêtrées pendant le mouvement qui sont indispensables à la consolidation de la mémoire au cours du sommeil.
Les chercheurs poursuivent leurs travaux en s’intéressant maintenant à l’intégration d’informations non-spatiales, comme les objets ou les textures, dans les séquences enchevêtrées, ainsi qu’à leur réactivation pendant le sommeil.
 
1. Membre associé de l’Université PSL, le Collège de France mène depuis 2009 une politique volontariste d’accueil d’équipes indépendantes qui bénéficient de services techniques et scientifiques mutualisés et d’un environnement multidisciplinaire exceptionnel. Vingt-deux équipes sont actuellement hébergées au sein du Centre interdisciplinaire de recherche en biologie ainsi que dans les instituts de chimie et de physique du Collège de France. Soutenu notamment par le CNRS, ce dispositif est ouvert aux chercheurs français et étrangers. Il contribue à consolider l’attractivité de Paris dans la géographie mondiale de la recherche.

 

 DOCUMENT      inserm     LIEN 
 

 
 
 
 

Interface cerveau-machine (ICM)

 

 

 

 

 

 

 

Interface cerveau-machine (ICM)

Sous titre
Agir par la pensée

Une interface cerveau-machine (ICM) désigne un système de liaison directe entre un cerveau et un ordinateur, permettant à un individu d’effectuer des tâches sans passer par l’action des nerfs périphériques et des muscles. Ce type de dispositif permet de contrôler par la pensée un ordinateur, une prothèse ou tout autre système automatisé, sans solliciter ses bras, mains ou jambes. Le concept remonte à 1973 et les premiers essais chez l’homme datent du milieu des années 90.
       
Dossier réalisé en collaboration avec François Berger, directeur du laboratoire de technologie translationnelle Clinatec (CEA/CHU de Grenoble/Inserm/Université Joseph Fourier, Grenoble) et Jérémie Mattout, chercheur dans l’équipe Dycog du Centre de recherche en neurosciences de Lyon (Inserm/CNRS/Université Claude Bernard, Lyon)
 
Comprendre les ICM
En cours de développement dans différents laboratoires à travers le monde, les interfaces cerveau-machine (ICM) sont des dispositifs qui devraient permettre à des personnes souffrant de handicaps majeurs de retrouver une certaine autonomie. Des individus tétraplégiques ou atteints du locked-in syndrome (le patient pense, mais il ne peut bouger que les paupières) pourraient par exemple contrôler un exosquelette grâce la pensée pour se déplacer, des personnes amputées pourraient contrôler les mouvements de leur prothèse par la pensée, des personnes ayant perdu la parole pourraient parler via un ordinateur, toujours grâce à la pensée… Les applications potentielles sont nombreuses, y compris pour les personnes en bonne santé avec par exemple le domaine des jeux vidéos.

Comment ça marche ?
La structure d’une ICM comprend un système d’acquisition et de traitement des signaux cérébraux, un système de classification puis de traduction de ces signaux en commande (écriture sur écran, mouvement de fauteuil roulant ou de prothèse...).
Concrètement, l’utilisateur focalise son attention sur une stimulation extérieure de son choix, ou bien imagine effectuer un mouvement. Cela génère une activité cérébrale caractéristique et mesurable à l’aide de capteurs. Ces signaux sont transmis à un ordinateur qui les analyse pour en extraire les données utiles, puis les transforme en commande pour la machine (prothèse, exosquelette, fauteuil roulant, interface logicielle, voix artificielle…).
Ces systèmes fonctionnent le plus souvent en boucle fermée (ou boucle de rétroaction), permettant à l’utilisateur de progresser dans la maîtrise de l’ICM. L’utilisateur observe le résultat de sa commande cérébrale, puis adapte sa pensée, affinant peu à peu la précision de l’action produite par le système. Les recherches s’inspirent aussi des algorithmes d’apprentissage automatique pour rendre la machine adaptative et capable d’affiner son interprétation des activités cérébrales de l’utilisateur au cours du temps.
L’utilisation de ces interfaces n’est pas toujours intuitive et la phase d’adaptation et d’apprentissage peut être longue pour parvenir à maîtriser l’outil. Certaines études estiment que la part de la population qui ne peut réussir à contrôler les systèmes actuels pourrait atteindre 30%. Ceci explique en partie pourquoi, malgré les récents progrès de ce domaine de recherche, ces applications ne sont pas encore disponibles sur le marché.
 
Enregistrer les signaux électriques
La première étape nécessaire au fonctionnement d’une ICM consiste à enregistrer l’activité cérébrale. Le plus souvent, des électrodes sont placées sur le crâne, sur le cortex ou dans le cerveau, afin d’enregistrer les signaux électriques émis par les neurones à l’occasion d’une pensée particulière.
Il existe ainsi trois modes d’enregistrement :
*         Invasif : Une grille d’électrodes est implantée dans le cortex. Elle enregistre les signaux d’une population de neurones avec une très grande précision spatiale, mais cette méthode est encore associée à un risque de complications et de perte de signal à long terme. Elle n’a été jusqu’ici testée que chez un très faible nombre de patients volontaires, aux Etats-Unis.
*         Semi-invasif : Une grille d’électrodes est placée sous la dure-mère, la membrane qui entoure le cerveau juste sous la boîte crânienne. La résolution spatiale est un peu moins bonne qu’avec une implantation dans le cortex, mais les risques de complication sont moindres et des applications médicales sont rapidement envisageables. Une équipe française (Clinatec, Grenoble), a récemment développé un implant de ce type (Wimagine), composé de deux lots de 64 électrodes sans fil.
*         Non-invasif : Le patient porte un casque en tissus équipé de multiples électrodes pour mesurer l’électroencéphalogramme (EEG). La résolution spatiale est limitée et la durée d’enregistrement ne dépasse guère la journée. Toutefois ce système est peu cher, facile d’utilisation et permet d’envisager de nombreuses applications, y compris pour le grand public. De fait, c’est aujourd’hui le mode d’enregistrement le plus utilisé.
Le choix du mode d’enregistrement dépend de l’objectif recherché et des applications. Dans tous les cas, les électrodes peuvent être retirées en cas de problème.

Un logiciel interprète les signaux
Les électrodes utilisées pour l’enregistrement sont reliées à un logiciel externe, qui classe, analyse et interprète les signaux cérébraux, puis les restitue sous forme de commandes qu’exécute la machine contrôlée.
Selon la tâche à effectuer grâce à l’ICM, les signaux cérébraux enregistrés sont plus ou moins nombreux et profonds, et plus ou moins difficiles à traiter. Plusieurs dimensions rentrent en compte dans l’analyse : la durée des signaux, leur fréquence et leur répartition dans l’espace. Un prétraitement et un filtrage permettent de débarrasser les signaux enregistrés du bruit de fond. Le signal caractérisant l’intention est ensuite extrait, et ses composantes sont classées pour ne conserver que les informations utiles.
Des équipes françaises, notamment à l’Inserm (équipe DYCOG du Centre de recherche en neuroscience de Lyon), se sont associées pour développer un logiciel de traitement de ces signaux en temps-réel. Baptisé OpenViBE et libre d’accès, ce logiciel est destiné aux chercheurs qui travaillent sur les interfaces cerveau-machine pour des applications dans le domaine de la santé ou du multimédia (les jeux vidéo en particulier).

Les applications en santé
De nombreuses équipes de recherche travaillent au développement d’ICM destinées à la manipulation d’exosquelettes, des dispositifs de soutien destinés à des personnes totalement paralysées,  afin de leur permettre de se lever, de se déplacer et d’effectuer différents mouvements. Mais bien d’autres applications sont envisagées : contrôler un fauteuil roulant ou une prothèse de membre, faire parler ou écrire un ordinateur. Aux Etats-Unis, des chercheurs ont déjà réussi à obtenir le contrôle à distance d’un bras robotisé par des personnes tétraplégiques.


Une femme tétraplégique contrôle un bras robotisé par la pensée – reportage – 4 min 29 – Nature video (2012)
En France, des chercheurs du CRNL ont développé une ICM permettant d'écrire en sélectionnant par la pensée des lettres présentées sur un écran. Des lignes et des colonnes de lettres sont successivement surlignées sur l’écran et quand la lettre recherchée apparaît, l’individu focalise son attention sur elle. Le logiciel sait interpréter les signaux cérébraux émis par ce laps de concentration et sélectionne la lettre.

Et demain, soigner des troubles psychiatriques ?
La boucle de rétroaction instaurée par une ICM peut permettre à l’utilisateur de prendre conscience de son activité cérébrale pour apprendre à la contrôler. C’est le principe général du biofeedback (ou neurofeedback lorsqu’il s’applique au cerveau). Ce principe pourrait conduire à de nouvelles approches thérapeutiques, notamment pour réduire les troubles de l’attention, en complément des approches médicamenteuses. A Lyon, le CRNL est à l’origine d’un partenariat public-privé visant à développer des dispositifs de ce type reposant sur des interfaces ludiques. Les chercheurs prévoient de lancer une étude clinique pour évaluer leur effet chez des enfants atteints de troubles de l’attention.

Les enjeux de la recherche

Améliorer la biocompatibilité et l’intégration des implants dans le cerveau
Les grilles d’électrodes invasives dont on dispose actuellement ne sont pas biocompatibles. Lorsqu’on les implante dans le cortex, elles déclenchent une réaction de défense des tissus. Les cellules gliales encapsulent l’implant, aboutissant à une perte de signal au bout d’un certain temps. En utilisant des nanotechnologies et des matériaux particuliers comme du diamant ou du graphène, les chercheurs tentent de rendre ce type de dispositif symbiotique avec le cortex. Ainsi, une équipe Inserm a récemment conçu un capteur 100% biocompatible en matériau organique, offrant une qualité d’enregistrement des signaux excellente.

En outre, les dispositifs actuels amplifient les signaux reçus à distance, créant ainsi un bruit de fond qui nuit à la qualité du traitement des enregistrements. Les chercheurs tentent d’améliorer l’intégration des électrodes dans le cortex. Un projet consiste ainsi à développer des électrodes souples qui seraient incorporées dans le cerveau à l’aide de micro aiguilles biodégradables. En parallèle, des équipes poursuivent le travail de miniaturisation des électrodes.

Aboutir à un bénéfice clinique réel
Ces travaux n’auront de sens clinique que s’ils améliorent le quotidien de personnes souffrant de handicaps. Au-delà de la prouesse technologique que représente la possibilité de piloter un objet par la pensée, l’objectif final est que ces personnes puissent à terme se déplacer, communiquer, être indépendantes. Pour cela, l’amélioration des implants et des logiciels de traitement des signaux cérébraux doit s’accompagner d’une amélioration des outils mis à disposition des patients, par exemple un exosquelette complet pour les personnes tétraplégiques. Les chercheurs y travaillent.
 

De nouveaux dilemmes éthiques
Ces nouvelles interfaces entre l’Homme et les machines suscitent bien des questions sur le plan éthique. Comment garantir une égalité de traitement pour tous les malades avec ces dispositifs, compte tenu de leur coût et de leur difficulté d’accès prévisibles ? Comment distinguer la responsabilité de l’Homme de celle de la machine lors d’un défaut de fonctionnement de l’ICM ? Le neurofeedback a-t-il des effets secondaires et peut-on imaginer des systèmes qui influeraient sur le cerveau de manière indésirable ? Les chercheurs soulèvent déjà et débattent en dehors même de leur communauté de ces questions qui pourraient devenir de plus en plus aigües, au fur et à mesure des avancées dans ce domaine.
L'Agence de la biomédecine est déjà mobilisée et a commencé un travail interne d'évaluation de projets et de recommandations sur ce qui est éthiquement acceptable ou pas.

 

   DOCUMENT      inserm     LIEN 

 
 
 
 

Parkinson (maladie de)

 

 

 

 

 

 

 

Parkinson (maladie de)

Sous titre
La deuxième maladie neurodégénérative la plus fréquente en France

La maladie de Parkinson est une maladie neurodégénérative caractérisée par la destruction d’une population spécifique de neurones, les neurones à dopamine
dopamine
Hormone sécrétée par certains neurones dopaminergiques, impliquée dans le contrôle de la motricité, dans la maladie de Parkinson ou encore les addictions.
de la substance noire du cerveau. Les traitements actuels permettent de contrôler les symptômes moteurs associés à la maladie, mais ils sont sans effet sur les autres symptômes et sur la progression de la dégénérescence. Les chercheurs développent des stratégies neuroprotectrices visant à enrayer cette progression. Ils cherchent aussi comment repérer les patients à risque, pour leur adm       

Dossier réalisé en collaboration avec les professeurs Jean-Christophe Corvol, directeur du Centre d'investigation clinique de l’Institut de la moelle et du cerveau, neurologue à l'hôpital de la Pitié-Salpêtrière (Paris) et Stéphane Hunot, directeur de recherche CNRS/Inserm à l’Institut de la moelle et du cerveau

Comprendre la maladie de Parkinson
La maladie de Parkinson est la deuxième maladie neurodégénérative la plus fréquente en France, après la maladie d'Alzheimer. Elle constitue en outre une cause majeure de handicap chez le sujet âgé.
Rarissime avant 45 ans, la maladie de Parkinson touche des sujets plus âgés, avec un pic autour de 70 ans : 1 % des plus de 65 ans sont concernés. Au total, entre 100 000 et 120 000 personnes sont touchées en France, et environ 8 000 nouveaux cas se déclarent chaque année. Et compte tenu du vieillissement de la population, l’incidence de la maladie progresse.


Dégénérescence des neurones à dopamine
La maladie de Parkinson se manifeste spécifiquement par la dégénérescence progressive des neurones à dopamine dans la substance noire du cerveau. La disparition de ces cellules s'accompagne de perturbations des réseaux de neurones qui leurs sont associés dans différentes zones du cerveau : au niveau du striatum, du thalamus, du noyau sous thalamique…

Les neurones dopaminergiques sont impliqués dans le contrôle des mouvements. Quand certains sont détruits, on voit apparaître les tremblements caractéristiques de la maladie de Parkinson. (Institut de Génomique Fonctionnelle, Montpellier)
La dégénérescence des neurones à dopamine est en outre associée à la présence de corps de Lewy, dans la substance noire et dans d’autres zones du cerveau. Ils correspondent à des amas pathogènes formés par une protéine : l’α-synucléine. Naturellement présente chez les sujets sains, cette protéine est retrouvée au sein des amas pathogènes sous une forme "malade", présentant un problème de conformation qui favoriserait son agrégation anormale. Il a récemment été montré, chez l’animal, que l’α-synucléine "malade" porte l’information nécessaire et suffisante à déclencher la maladie

Une maladie sporadique
Les causes exactes de la dégénérescence neuronale sont incertaines, mais l’âge reste le principal facteur de risque. La dégénérescence des neurones dopaminergiques
dopaminergiques
Relatif à la dopamine ou au cellules sécrétant cette hormone.
serait favorisée par des facteurs génétiques et environnementaux et les mécanismes précipitant cette dégénérescence sont vraisemblablement multiples. Il pourrait s’agir de l’accumulation de radicaux libres, d’un déficit énergétique ou métabolique, ou encore d’un processus inflammatoire. Ces différentes pistes sont à l’étude.
Il existe une susceptibilité génétique à la maladie de Parkinson, mais elle est relativement faible. A ce jour, 21 variants génétiques associés à la maladie ont été identifiés en étudiant le génome de grandes cohortes de patients. L’Inserm a participé à ces travaux dans le cadre du consortium international GEOPD (pour Genetic Epidemiology Of Parkinson’s Disease) ou IPDGC (pour International Parkinson's Disease Genomics Consortium). Cependant, aucun de ces variants n’a d’effet suffisamment fort pour être prédictif de la maladie à un niveau individuel : un sujet qui présente le profil génétique le plus défavorable voit son risque de développer la maladie multiplié par un facteur seulement égal à 2,5.

La maladie de Parkinson n’est donc généralement pas une maladie héréditaire. Cependant, il existe environ 5% de formes génétiques, liées à des mutations affectant des gènes spécifiques. Certains ont été identifiés, comme le gène de l’ α-synucléine, le gène LRRK-2 (leucine-rich repeat kinase
kinase
Enzyme capable de transférer un groupement phosphate d'une molécule à une autre pour réguler son activité.
2) ou encore le gène de la glucocerebrosidase (GBA). Toutefois, ces mutations ne sont pas systématiquement associées au développement de la maladie. Des études en cours essayent d’identifier les facteurs qui "protègent" les sujets porteurs d’une de ces mutations qui ne développent pas la maladie.
Du côté des facteurs de risque environnementaux, le rôle de l’exposition aux pesticides est bien établi. Des études de cohorte ont notamment été conduites par des chercheurs de l’Inserm, en collaboration avec la Mutualité sociale agricole. Elles ont montré l’existence d’un risque accru de maladie de Parkinson chez les agriculteurs exposés aux insecticides de type organochlorés. La maladie de Parkinson fait d’ailleurs partie du tableau des maladies professionnelles du régime agricole.
Il existe aussi des facteurs environnementaux qui semblent protecteurs. C’est le cas du tabac ou encore du café, peut être en raison de leur effet stimulant sur les neurones à dopamine.
L’interaction entre les facteurs environnementaux et les facteurs génétiques est aujourd’hui un grand champ d’investigation.

Une maladie chronique lentement évolutive
La maladie de Parkinson est une maladie chronique, d’évolution lente et progressive, dont le début est insidieux. La phase préclinique de la maladie, avant l’apparition des premiers symptômes, dure probablement plusieurs années. Pendant cette période, le cerveau compense la baisse de dopamine par des processus de plasticité, permettant un fonctionnement cérébral normal. Les patients restent asymptomatiques jusqu’à ce que 50 à 70% des neurones à dopamine soient détruits et que le cerveau ne soit plus en mesure de compenser.

Une triade de symptômes moteurs
Le diagnostic de la maladie de Parkinson repose sur l’existence de trois principaux symptômes moteurs. Ils ne sont pas forcément tous présents en même temps et peuvent être d’intensité variable. Ils restent longtemps asymétriques, ne touchant qu’un côté du corps. Il s’agit de :
*         L’akinésie, une lenteur dans la mise en œuvre et la coordination des mouvements. Elle interfère avec toutes les activités de la vie courante, y compris la marche.
*         L’hypertonie, une rigidité excessive des muscles. Elle peut toucher tous les muscles du corps, y compris le rachis. Elle provoque notamment une posture penchée vers l’avant.
*         Les tremblements, survenant au repos, affectant surtout les mains et les bras. Ils peuvent être intermittents et ne sont pas systématiques, épargnant environ 30% des patients.



Des symptômes non moteurs
La maladie de Parkinson se manifeste également par des symptômes non moteurs, résultant probablement des répercussions de la maladie sur des structures cérébrales non dopaminergiques :
*         problèmes de sommeil
*         perte d’odorat (anosmie)
*         troubles cognitifs
*         troubles de l’équilibre
*         douleurs
*         constipation
*         mictions urgentes
*         dépression...
Il est possible que certains de ces symptômes apparaissent avant les symptômes moteurs et soient annonciateurs de ces derniers. C’est notamment le cas des troubles du comportement en sommeil paradoxal (mouvements brusques voire violents accompagnant les rêves) : des études suggèrent que les personnes touchées par ces troubles présentent un risque accru de développer la maladie de Parkinson.

Plusieurs stades d’évolution
Il existe plusieurs stades de la maladie de Parkinson, reflétant l’évolution de sa sévérité :
*         Stade I : premiers signes unilatéraux, ne gênant pas la vie quotidienne.
*         Stade II : signes encore unilatéraux, mais entraînant une gêne.
*         Stade III : signes bilatéraux, posture modifiée, pas de handicap grave, autonomie complète.
*         Stade IV : handicap plus sévère, marche encore possible, autonomie limitée.
*         Stade V : marche impossible (fauteuil roulant, alitement), perte d’autonomie.
 

Traiter les symptômes moteurs
La prise en charge de la maladie de Parkinson consiste à compenser le déficit en dopamine par :
*         un apport exogène en précurseurs de la dopamine (L-dopa), ou grâce à des molécules qui miment son effet au niveau des neurones (agonistesagonistesMolécule activant un récepteur en s'y fixant à la place du messager habituel

de la dopamine).
*         en inhibant les enzymes qui dégradent la dopamine du cerveau (inhibiteurs de la monoamine oxydase de type B, inhibiteurs de la C-O-méthytransférase qui potentialisent les effets de la L-dopa).
L’efficacité de ces traitements sur les symptômes moteurs est bonne, tout au long de la maladie. Néanmoins, ces médicaments n’empêchent pas la progression de la dégénérescence neuronale : pour préserver l’efficacité du traitement, les doses doivent donc être adaptées au cours de l’évolution de la maladie.
Par ailleurs, ces traitements ne sont pas efficaces sur les symptômes non moteurs qui résultent souvent de perturbations autres que dopaminergiques. La recherche de nouveaux traitements ciblant les symptômes qui ne sont pas sensibles aux médicaments dopaminergiques est donc un défi pour les années futures
Des complications motrices après 5 à 10 ans de traitement
Généralement après cinq à dix ans de traitement, des complications contre lesquelles il est difficile de lutter surviennent. Les patients connaissent des "phases on-off" au cours desquelles l’efficacité du traitement dopaminergique varie selon les moments de la journée : des périodes de mobilité sont entrecoupées de phases d’akinésie (blocage des mouvements, avec des difficultés à la marche et des risques de chute).
Ces patients doivent également faire face à des dyskinésies, c’est à dire à des mouvements anormaux et involontaires. Ces effets indésirables, en rapport avec l’administration intermittente de L-dopa et des pics de concentration dans le cerveau, peuvent être très invalidants.
La stimulation cérébrale profonde
C’est précisément à ce stade de la maladie, chez des patients concernés par des fluctuations motrices et des dyskinésies, que la stimulation cérébrale profonde a fait les preuves de son effet bénéfique. La technique consiste à implanter des électrodes dans le noyau subthalamique, afin d’émettre des impulsions électriques grâce à un boitier implanté sous la peau.Cette approche thérapeutique concerne entre 400 et 500 personnes par an en France. Compte tenu de son caractère invasif, elle est réservée aux patients présentant un handicap important lié aux fluctuations motrices ou aux dyskinésies, et capables de supporter l’intervention (moins de 70 ans).

L’administration d’apomorphine par une pompe sous-cutanée ou de L-dopa en continue par sonde gastrique sont des alternatives intéressantes permettant une stimulation continue par la dopamine. Elles peuvent notamment être proposées aux patients qui ne peuvent bénéficier de la stimulation cérébrale profonde.

Des mesures non médicamenteuses à ne pas négliger
*         La kinésithérapie entretient les muscles et les articulations. Elle améliore la marche et l’équilibre.
*         La rééducation orthophonique est parfois nécessaire pour prévenir ou corriger les troubles de la déglutition, les difficultés à parler ou encore la gêne à l'écriture.

Les enjeux de la recherche
Le ministère de la Santé a récemment créé des centres experts sur la maladie de Parkinson au sein des CHU français. L’objectif est d’améliorer la prise en charge de la maladie et de développer la recherche : un réseau de recherche est en effet adossé à ces 24 centres experts, dont 16 sont des centres labélisés pour la recherche clinique (Centre d’investigation clinique - CIC).
Les aspects fondamentaux
La découverte des causes et des mécanismes des dégénérescences neuronales et de l’apparition des symptômes est un objet de recherche important.

Ainsi, à Bordeaux, une équipe de l’Institut des maladies neurodégénératives tente de comprendre pourquoi et comment les protéines d’α-synucléine s’agglomèrent pour former les corps de Lewy et se propagent de neurone en neurone. Cette recherche pourrait aboutir à l’utilisation d’anticorps dirigés contre l’α-synucléine, pour la neutraliser et éviter sa propagation dans le cerveau des patients.
D’autres équipes étudient le rôle des mitochondries
mitochondries
Organite cellulaire qui joue un rôle crucial dans le métabolisme cellulaire en assurant la production d'énergie.
dans la dégénérescence neuronale. Les mitochondries sont les "centrales énergétiques" de la cellule. Plusieurs études font état d’une altération précoce du réseau mitochondrial au cours du processus neurodégénératif. Des travaux récents montrent que certains gènes impliqués dans des formes familiales de la maladie de Parkinson joueraient un rôle essentiel dans l’élimination des mitochondries malades, évitant ainsi leur accumulation dans le neurone. Des chercheurs Inserm du Centre de physiopathologie de Toulouse-Purpan et de l’Institut du cerveau et de la moelle épinière (Paris) ont montré que l’injection d’une protéine virale qui améliore la qualité du réseau mitochondrial (protéine X), réduit de moitié les dégénérescences neuronales chez des souris parkinsoniennes.
Autre piste de travail, notamment pour une équipe de l’Ecole normale supérieure de Lyon, le réticulum endoplasmique
réticulum endoplasmique
Réseau membranaire intracellulaire dans lequel s'effectue, entre autres, la synthèse des protéines.
. Ce compartiment cellulaire héberge des protéines (les "chaperones") qui permettent aux protéines nouvellement produites d’acquérir leur bonne conformation. Or, dans un contexte de maladie de Parkinson, l’accumulation d’α-synucléine dans ce compartiment perturbe la fonction des chaperonnes. Il en résulte de nombreuses protéines mal conformées, qui génèrent un stress important et durable du réticulum endoplasmique. Ce stress provoque l’émission de signaux de mort cellulaire. Cependant, si ce stress est transitoire et léger, il semble rendre plus résistant à la maladie de Parkinson, tout au moins dans des modèles d’études précliniques. Cet effet inattendu et remarquable ouvre de nouvelles perspectives thérapeutiques.
L’inflammation cérébrale générée par la mort neuronale est encore une autre piste étudiée : les neurones malades, ou en voie de dégénérescence, émettent en effet différents signaux qui provoquent l’activation de cellules environnantes, et en particulier celle des cellules microgliales. Ces cellules sont responsables d’un processus inflammatoire local qui provoque lui-même l’arrivée d’autres cellules impliquées dans l’inflammation et défavorables à la survie des neurones résiduels : un véritable cercle vicieux se met en place.
Ces différents dysfonctionnements coexistent probablement. Les futurs traitements associeront donc certainement différentes molécules ciblant plusieurs d’entre eux.
Améliorer les traitements
Des chercheurs tentent d’améliorer l’efficacité des traitements, non seulement pour réduire les symptômes de la maladie, mais surtout pour ralentir sa progression et limiter l’apparition de complications de type "on-off" et dyskinésies. Plusieurs stratégies sont en cours de développement : nouveaux médicaments, amélioration de la chirurgie, thérapie cellulaire, thérapie génique...
Le développement de nouveaux médicaments ciblant les symptômes moteurs et non moteurs est en cours. Les pistes thérapeutiques actuelles reposent sur la modulation des systèmes contrôlant le mouvement indépendamment de la dopamine (systèmes glutamatergiques, adénosinergiques ou sérotoninergiques
sérotoninergiques
Relatif à la sérotonine (neuromodulateur).
). Le réseau de recherche clinique pour la maladie de Parkinson (NS-Park) a été récemment labellisé pour promouvoir ces études en France et mettre en œuvre des études à dimension Européenne.
Améliorer la stimulation cérébrale profonde est un second objectif. Les chercheurs tentent d’identifier les zones du cerveau les plus pertinentes à cibler pour lutter contre l’ensemble des symptômes associés à la maladie de Parkinson. Cette technique est actuellement réservée aux patients dont la maladie est "ancienne", avec plus de dix ans d’évolution, mais de récents travaux suggèrent qu’elle pourrait être bénéfique plus précocement, après seulement quelques années d’évolution. Cela soulève la question de savoir qui il faut opérer en priorité : les patients les plus sévèrement atteints ou ceux qui sont à risque d’évolution sévère ? Une étude devrait en outre bientôt débuter pour tester l'intérêt de cette approche chez les patients âgés de plus de 70 ans.

La thérapie cellulaire est une autre approche thérapeutique en développement. Elle consiste à injecter des neurones fonctionnels pour remplacer les neurones dégénérés. Depuis les années 2000, il est en effet possible d’obtenir des neurones à dopamines différenciés et fonctionnels à partir de cellules souches embryonnaires. Des essais ont eu lieu chez l’homme, mais les bénéfices cliniques sont mitigés : rien ne permet de trancher sur l’efficacité de cette technique complexe par rapport aux médicaments ou à la stimulation cérébrale profonde. La recherche se poursuit néanmoins. L’idée est maintenant de procéder à une greffe à partir de cellules souches issues du patient lui-même, pour éviter les incompatibilités entre donneurs et receveurs, et donc le risque de rejet de greffe.


Greffer des neurones - reportage – 3 min – film extrait de la série Etat de la recherche (plateforme Corpus) - 2014
L’utilisation de la thérapie génique est également étudiée. L’idée est de soigner grâce à des gènes qui s’exprimeraient dans le cerveau, afin d’y produire de la dopamine en continu. Les résultats d’un essai de phase I coordonné à l'hôpital Henri-Mondor (Créteil) sont encourageants. Les chercheurs ont introduit trois gènes codants pour des enzymes nécessaires à la synthèse de dopamine dans un vecteur viral
vecteur viral
Virus modifié qui sert à apporter un gène thérapeutique aux cellules.
. Ils ont ensuite injecté ce vecteur dans le striatum de quinze patients présentant des complications motrices. Une production de dopamine et une amélioration de certains symptômes moteurs ont été obtenues. Un essai clinique de phase II devra quantifier l’efficacité de cette thérapie à court, mais aussi à long terme : en effet, cette technique n’empêche pas la dégénérescence des neurones.
Ralentir la dégénérescence
Les chercheurs tentent par ailleurs de développer des thérapeutiques permettant de ralentir ou même de stopper la progression de la dégénérescence : cela marquerait une avancée considérable dans la lutte contre la maladie de Parkinson.
Ils s’intéressent dans ce but, à des médicaments neuroprotecteurs. Ainsi, un essai thérapeutique conduit au CIC de Toulouse a montré qu’un inhibiteur de la monoamine oxydase, la rasagiline, pourrait ralentir la progression de la maladie. Cet effet est cependant modeste. L’utilisation d’autres molécules neuroprotectrices est actuellement à l’étude.
Une autre piste pourrait s’avérer intéressante : celle des facteurs neurotrophiques. Il s’agit de protéines secrétées dans le cerveau qui contribuent au développement et au fonctionnement des cellules nerveuses. L’idée serait de les utiliser pour préserver les neurones dopaminergiques et favoriser leur croissance. Ces protéines ne sont pas directement injectables dans le cerveau et doivent donc être "administrées" par thérapie génique. Des essais cliniques ont déjà été conduits. Ils s’avèrent concluants en termes d’expression des protéines thérapeutiques dans le cerveau, mais aucune amélioration des symptômes n’a été constatée. Des progrès restent donc à faire dans ce domaine.
L’utilisation de chélateurs de fer constitue une autre approche en cours de développement. Un chélateur de fer est une molécule capable de se fixer au fer pour former un complexe qui sera éliminé dans les urines. Or la substance noire des patients parkinsoniens présente une forte concentration en fer, associée à la formation de radicaux libres délétères pour les neurones. Les résultats des premiers essais sont encourageants. Ils doivent être confirmés dans le cadre d’un essai qui sera réalisé à l’échelle européenne, piloté par le CHU de Lille, l’Inserm et le réseau NS-Park.

Dépister le plus tôt possible

Système nerveux entérique et maladie de Parkinson. Culture de cellules gliales entériques de rat : noyaux cellulaires en bleu (© Inserm, T. Clairembault, U913)
La recherche sur les médicaments neuroprotecteurs s’accompagne du besoin de dépister les patients le plus précocement possible : l’objectif, à terme, est de pouvoir administrer le traitement dès le début de la dégénérescence, si possible avant même l’apparition des symptômes. C’est pourquoi un effort considérable de recherche se focalise sur l’identification de marqueurs radiographiques ou biologiques de la neurodégénérescence. Actuellement, aucun test sanguin ou méthode d’imagerie ne permet de suivre l’évolution de la maladie de Parkinson.
Les chercheurs tentent de mettre en évidence des marqueurs en étudiant des cohortes de patients à risque de développer la maladie (sujets porteurs de mutations génétiques ou ayant des symptômes "précurseurs" de la maladie). Ces études s’étaleront sur plusieurs années. Elles comportent des examens cliniques, des explorations du sommeil, des IRM cérébrales, des échographies de la substance noire (pour visualiser les dépôts de fer), des examens par imagerie nucléaire (PET)... Plusieurs cohortes sont actuellement suivies en France et dans le cadre de collaborations internationales afin d’augmenter les chances de trouver ces marqueurs.

 

 DOCUMENT        inserm        LIEN

 
 
 
 

MÉDICAMENTS ET CHIMIE : UN BRILLANT PASSÉ ET UN VRAI FUTUR

 

 

 

 

 

 

 

MÉDICAMENTS ET CHIMIE : UN BRILLANT PASSÉ ET UN VRAI FUTUR

Très tôt l’homme a utilisé les produits de la Nature pour traiter les différentes maladies auxquelles il était confronté. Les premiers traités de chimie thérapeutique moderne, décrivant la relation entre un composé chimique et une activité thérapeutique datent maintenant de plusieurs siècles. Toutefois, c'est au tournant du 19ème et du 20ème siècle avec le développement de la chimie moléculaire et de la microbiologie que la chimie thérapeutique prend son essor. L'évolution rapide de ces deux disciplines a conduit aux premiers antibiotiques. Sait-on encore que la production à grande échelle de la pénicilline a mobilisé aux Etats-Unis entre 1943 et 1945 plusieurs centaines de scientifiques, autant que pour la mise au point des premières bombes atomiques ? Tout au long du 20ème siècle, l'application stricte des règles d'hygiène pasteuriennes et la mise au point de nombreux médicaments font régresser les maladies et la durée de vie augmente. Beaucoup reste à faire, mais la création de nouveaux médicaments élaborés par synthèse chimique semble marquer le pas à partir des années 1980 à 1990. Les apports récents de la génomique et la protéomique donnent l'espoir d'accéder à de nouvelles méthodes de découvertes de médicaments. La chimie thérapeutique est-elle condamner à un déclin irréversible ou bien va-t-elle refleurir à nouveau, en intégrant les nouveaux outils de la biologie moléculaire, et apporter de nouveaux espoirs dans le traitement de maladies émergeantes ou ré-émergeantes ? L'innovation thérapeutique demande la mise en place des synergies fortes entre chercheurs de quatre à cinq disciplines différentes ; comment favoriser ces synergies ? Les enjeux de l'innovation thérapeutique concernent non seulement le domaine de la santé, mais aussi celui de l'économie. La découverte et le développement de nouveaux médicaments mobilisent de nombreux effectifs. L'Europe continentale gardera t-elle sa place dans l'innovation thérapeutique au 21ème siècle ?

Transcription [1] de la 617e conférence de l'Université de tous les savoirs donnée le 24 juin 2006 revue par l'auteur.
Bernard Meunier : « Médicaments et chimie : un brillant passé et un vrai futur »
Très tôt l'homme a utilisé les produits de la Nature pour traiter les différentes maladies auxquelles il était confronté. Les premiers traités de chimie thérapeutique moderne, décrivant la relation entre un composé chimique et une activité thérapeutique, datent maintenant de plusieurs siècles. Nous allons présenter l'histoire commune de la chimie et du médicament sur plusieurs millénaires avant de décrire les enjeux des thérapies du futur.
Un médicament est une substance possédant des propriétés curatives ou préventives destinées à guérir, soulager ou prévenir des maladies. Il contient à la fois la notion de guérison et de prévention. « Médicament » et son synonyme « remède » viennent du mot latin « mederi » qui signifie « soigner ».
Le mot « médicament » se traduit en anglais par « medication » et plus souvent par « drug », notamment en américain. Le terme « drug » ou « drogue » provient du latin « drogia ». Il est ambigu puisqu'il désigne aussi bien un médicament qu'une substance illicite. En français, il ne désigne plus une préparation magistrale d'un pharmacien d'officine, ou d'un droguiste traditionnel, depuis une cinquantaine d'années.
Les premières sources de médicament sont les plantes. Les chimistes vont très rapidement s'y intéresser. L'homme de Neandertal était déjà un spécialiste de l'utilisation des plantes, y compris pour un usage médicinal. Ainsi des roses trémières ont été retrouvées dans la bouche de néandertaliens qui avaient été ensevelis dans les tombes de la grotte d'Amuci (Israël) [2]. La rose trémière était un analgésique utilisé dans le traitement des infections buccales.
La médecine traditionnelle chinoise est la plus ancienne. Les premières traces écrites de la médecine traditionnelle chinoise remontent à près de 3 000 ans avant J.-C. Le légendaire empereur Shan-Nung avait un herbier de plantes médicinales (2 900 avant J.-C.) ; mais on retiendra surtout l'herbier de Li Shih-Chen de 1578 dont une version anglaise est disponible depuis 2002 sous le titre « Chinese medicinal herbs ».
Les Égyptiens utilisaient également les plantes comme médicaments. Un archéologue allemand, Georg Ebers, de l'université de Leipzig a découvert au XIXème siècle à Louxor un document extraordinaire qu'on appelle « le papyrus d'Ebers ». Ce papyrus qui fait 20 mètres de long est conservé à la bibliothèque de l'université de Leipzig. Cette sorte de codex datant du siècle d'Aménophis Ier (1525-1504 avant J.-C.) est une liste de près de 870 plantes à usage médical.
Hippocrate (né en Grèce sur l'île de Cos en 460 avant J.-C.) recense plus de 400 plantes pour traiter les maladies. Le terme grec « pharmakon » qui a donné « pharmacie » en français a un double sens. Il désigne à la fois la substance qui guérit ou remède, et le poison. En effet, les produits d'origine naturelle ne sont pas inoffensifs. Les grecs savaient parfaitement qu'en fonction de la dose un même produit pouvait avoir une activité curative qui allait soulager le malade ou bien une activité toxique et l'empoisonner. La toxicité est toujours dépendante de la dose.

Claude Galien, autre grand médecin grec (131-201 après J.-C.), est le premier à s'intéresser à la préparation même des médicaments à base de plantes. Son travail est à l'origine de la pharmacie galénique. La pharmacie galénique consiste à préparer à partir d'une substance, un médicament pour le rendre plus agréable, plus facilement assimilable. La pharmacie galénique a été considérée ces derniers temps comme un aspect traditionnel de la pharmacie mais elle retrouve actuellement une nouvelle jeunesse avec l'apport de nouveaux matériaux. Il s'agit d'améliorer l'efficacité des médicaments en améliorant leur biodisponibilité, leur distribution à travers les tissus, pour cibler les organes touchés. Galien a écrit, d'après ses contemporains, plus de cinq cents ouvrages. Malheureusement nous avons très peu de traces de ces ouvrages car leur quasi-totalité a été détruite lors d'un incendie dans le temple de la paix à Rome où il enseignait en 192 après J.-C.
Avicenne (Ibn Sina, né en Perse en 980, mort en 1037) est connu dans l'histoire du médicament comme le médecin arabe qui a permis de retrouver et transmettre les acquis de la médecine grecque et de la médecine égyptienne aux IX-Xèmes siècles. Le « Canon de la médecine » est son ouvrage le plus connu. Le volume 5 décrit 760 médicaments alors qu'Hippocrate en décrivait 400 et « le papyrus d'Ebers » 870. Traduit en latin entre 1150 et 1187 par Gérard de Crémone, cet ouvrage sera la référence médicale jusqu'au XVIIème siècle.
En Europe, après la perte des savoirs qui fait suite à l'effondrement de l'Empire romain, les connaissances sont retrouvées à travers la médecine arabe.
Les alchimistes transmettaient le savoir de ce qui était déjà les balbutiements de la chimie et de l'utilisation des plantes et des produits chimiques pour guérir. Paracelse, médecin alchimiste suisse (1493-1541) est le premier à introduire les produits chimiques de synthèse dans les traitements médicaux. Il signale les propriétés anesthésiques de « l'eau blanche » (éther éthylique ou diéthyléther) obtenue par action de l'acide sulfurique sur l'éthanol : « L'eau blanche fait tomber les poulets dans un sommeil profond dont ils se réveillent sans en subir aucun dommage. » Après l'utilisation des plantes et la reconnaissance de principes actifs dans les plantes, nous arrivons ainsi peu à peu à la création de nouvelles molécules.

L'histoire des médicaments en France du XVème au XVIIIème siècle voit la mise en place des préparations reproductibles, ce qu'on appellerait maintenant les bonnes pratiques de laboratoire. Dans l'industrie chimique et l'industrie pharmaceutique, tout ce qui touche les médicaments est largement codifié. Les cahiers de laboratoire sont écrits selon certains critères et les archives sont conservées pour l'essentiel du travail entre 15 et 20 ans. Ces bonnes pratiques ne sont pas récentes puisqu'elles remontent à Jean Le Bon. En 1326, il édite « l'Antidotaire de Nicolas » recommandant aux apothicaires de Paris de suivre de bonnes pratiques de laboratoire.
À partir du XVème siècle, les premiers livres de pharmacopée sont publiés en Europe, notamment :
Ricettario Fiorentino (Italie, XVème siècle)
Codex Medicamentarius (fin XVIème siècle)
Pharmacopea Parsisiensis (1638)
Pharmacopée universelle de Nicolas Lémery (1697)
Éléments de Pharmacie et de Chimie d'Antoine Baumé (1762)
La rédaction du Codex Medicamentarius, ordonnée en 1568, a demandé plus de quarante années de rédaction collective et a donné lieu à des versions régionales. Il fait partie des grands ouvrages de la vie intellectuelle de cette époque. Il expliquait comment avoir une préparation de médicaments parfaitement reproductible.
Les codex régionaux étaient largement inspirés des codex parisiens, mais il y avait tout de même des divergences et au moment de la rationalisation de la Révolution Française, les pharmacopées régionales ont été abandonnées au profit d'une référence nationale. La loi du 21 germinal de l'an XI, en 1803, impose un texte unique pour les recettes de pharmacopée classique.
La « Pharmacopée universelle » de Nicolas Lémery (1645-1715) est le premier ouvrage décrivant les interactions entre la chimie raisonnée et le monde du médicament. Nicolas Lémery avait une double formation. Après avoir travaillé comme aide apothicaire, il a fait des études de médecine à l'université de Montpellier, dont on n'oublie pas qu'elle a formé Rabelais. Nicolas Lémery y a occupé la Chaire de chimie avant de revenir à Paris et de donner rue Galande des cours de chimie raisonnée en faisant des expériences publiques. Il fait ainsi sortir la chimie de l'alchimie qui était totalement embourbée dans l'obscurantisme. Suivant la pensée raisonnée de Pascal et de Descartes, la révolution vers le siècle des Lumières est en cours. Pour Nicolas Lémery, la chimie va devenir une science raisonnée comme les mathématiques ou la physique. Pour lui, l'essentiel est la reproductibilité des expériences. « Le Cours de Chymie » publié en 1675 par Nicolas Lémery alors âgé de trente ans, a été l'ouvrage de référence en chimie réédité dix-neuf fois pendant un siècle avant d'être remplacé par les premiers livres de chimie moderne.

La chimie moderne, raisonnée, s'est développée grâce aux travaux de Lavoisier, Berthollet, Fourcroy et Guyton de Morveau. Ce quatuor a véritablement révolutionné la chimie à la fin du XVIIIème siècle. Ils introduisent la nomenclature chimique, c'est-à-dire la possibilité de nommer un composé chimique de manière rationnelle de façon à ce que tout le monde puisse parler du même produit dans tous les pays en se comprenant. Les chimistes disposent alors d'un langage universel et rationnel, totalement débarrassé de la poésie et de l'obscurantisme de l'alchimie. Avant 1789, le CO2 ou dioxyde de carbone avait plus de quarante noms différents dont « l'air fixe » ! " « La Méthode de Nomenclature chimique » (1787) par Guyton de Morveau, Lavoisier, Berthollet et Fourcroy, et « le Traité élémentaire de chimie » (1789) de Lavoisier marquent l'entrée de la chimie dans les sciences exactes. Parlons un peu de la découverte de l'eau de Javel.
À cette époque, le lin devait être blanchi avant la teinture. Cette opération était réalisée en posant les draps dans un pré. Le rayonnement solaire sur la chlorophylle dégageait de l'oxygène singulet qui provoquait le blanchiment du lin. Les lavandières et les paysans se disputaient l'usage des pâturages. Claude Berthollet en cherchant un agent de blanchiment a synthétisé en 1789 : l'hypochlorite. Cette découverte a été publiée dans les « Les Annales de chimie » créées par Fourcroy, Guyton de Morveau et Lavoisier quelques années auparavant. L'hypochlorite NaOCl est obtenu par oxydation de chlorures qui conduit à la formation de chlore, et la solution aqueuse obtenue devient stable en milieu alcalin, initialement de la cendre, source de potasse. La première usine de fabrication de l'hypochlorite se situait à Javelle, petit village de lavandières de l'Ouest parisien, d'où le nom de l'eau de Javel.
L'eau de Javel est un blanchissant mais aussi un agent de désinfection extraordinaire. Elle lutte efficacement contre les bactéries, les agents pathogènes et les virus, qui ne seront identifiés qu'au milieu du siècle suivant avec l'essor de la microbiologie. Elle a permis de nettoyer les hôpitaux, en particulier les sols des zones infectées, et de sauver des millions de vies. Le Dakin, solution d'hypochlorite coloré avec du permanganate, est toujours utilisé comme désinfectant et les dentistes nettoient les racines des dents infectées avec de l'hypochlorite, notamment pour tuer le virus du SIDA. L'agent désinfectant de l'eau de Javel c'est l'acide hypochloreux, celui là même qui est libéré par les enzymes des macrophages humains pour éliminer les pathogènes.

Le début du XIXème siècle, 1800-1850, voit la naissance de la chimie des produits naturels. Le développement de la chimie rationnelle et l'adoption de méthodes expérimentales rigoureuses permettent de caractériser les produits actifs des plantes médicinales.
La morphine est isolée par un jeune pharmacien allemand, Friederich Sertürner, en 1803.
L'acide salicylique ou salicyline est extrait en 1829 de l'écorce de saule (salix en latin) par Pierre-Joseph Leroux. L'utilisation de feuilles de saule était connue pour aider à guérir les fièvres, limiter les maux de tête. Elle était mentionnée dans le papyrus égyptien découvert par Ebers. L'identification du principe actif, sa caractérisation et sa production rationnelle permettent d'avoir une préparation efficace d'un médicament dont l'activité ne dépend pas de la personne qui récolte les feuilles ni de la saison.
En 1853, Charles Gerhardt, brillant chimiste strasbourgeois (1816-1856), réussit la synthèse de l'acide acétylsalicylique et dépose un brevet. En vingt ans, il va aussi introduire en chimie la notion de fonction chimique utilisée pour classer les produits chimiques. Son décès prématuré plonge son travail dans l'oubli pendant de nombreuses années.
En 1897, Félix Hoffmann de la société Bayer reprend les travaux de Gerhardt et réalise la synthèse industrielle. La commercialisation de l'aspirine par Bayer débute en 1899. L'exportation de l'aspirine avant la première guerre mondiale a été le début florissant de cette société allemande. À l'occasion du traité de Versailles le gouvernement français a exigé que le brevet de l'aspirine passe dans le domaine public. Elle a ainsi été fabriquée à Lyon dans les usines du Rhône qui donneront naissance avec les usines Poulenc de Vitry à Rhône-Poulenc, société qui a largement contribué au développement de l'industrie pharmaceutique française au XXème siècle.
Au début du XIXème siècle, les chimistes sont capables d'identifier et de synthétiser des produits à partir de produits naturels. Au milieu du siècle, 1850-1860, l'association de la chimie des colorants à la chimie des produits naturels va conduire à la naissance de l'industrie pharmaceutique moderne.

Les trente dernières années du XIXème siècle vont voir l'épanouissement de la microbiologie qui fera le lien entre les bactéries pathogènes et les infections. Le microscope avec l'observation directe des micro-organismes permet de battre en brèche la théorie de la génération spontanée des microbes. Le développement conjoint de la microbiologie et de la chimie va permettre la création de merveilleux médicaments. La notion d'agent pathogène existait au début du XIXème siècle puisque Larrey, célèbre chirurgien des armées napoléoniennes, évitait les infections lors des amputations sur les champs de bataille en utilisant de l'alcool, du vinaigre, et un peu le fer rouge.
Louis Pasteur (1822-1895) et Robert Koch (1843-1910) sont les deux figures marquantes de la microbiologie en France et en Allemagne. En une trentaine d'année, ils vont permettre l'identification des agents pathogènes, virus ou bactéries, responsables des maladies suivantes : rage, peste, choléra, typhoïde, méningite, diphtérie, tuberculose, syphilis, tétanos, botulisme, lèpre, ...
La connaissance de l'agent pathogène va conduire à la mise en place de règles d'hygiène rationnelles et la mise au point de vaccins, d'antibactériens et d'antiviraux. Le respect des règles d'hygiène pasteurienne dans les salles d'accouchement a permis de diviser par trois à quatre la mortalité infantile.

Les premiers médicaments obtenus par synthèse chimique apparaissent avec l'essor de la chimie industrielle à la fin du XIXème siècle. Paul Erlich comprend qu'il est possible d'associer des petites molécules chimiques pour lutter contre un certain nombre d'agents pathogènes. Il s'intéresse aux dérivés de l'arsenic. Il crée le Salvarsan, le premier médicament qui lutte contre la maladie du sommeil.
Le premier antibactérien date de 1933. Gerhardt Domagk va tester des milliers de molécules de l'IG Farben entre 1927 et 1930 sur des streptocoques. Ce travail le conduit aux sulfamides, dont le dérivé azoïque le Prontosil, et aux acridines. Le premier sulfamide de l'histoire du médicament est une étape essentielle puisqu'il marque la découverte de la notion de métabolite actif et de la mise en évidence de son mécanisme d'action. Il comprend la notion de métabolite actif, le fait, qu'entre le produit qui est absorbé et le produit qui va agir sur sa cible pharmacologique, il y a une transformation par l'organisme. En 1935-1938, les époux Tréfouël de l'Institut Pasteur montrent que l'activité antibactérienne est permise par la coupure de la molécule au niveau d'une double liaison azote-azote qui donne une amine aromatique qui est le produit actif.
Plusieurs questions restaient encore en suspens : pourquoi une molécule a-t-elle une activité pharmacologique ? Quelle est sa cible ? Comment cette molécule interagit-elle avec la cible ? En 1940, Woods de l'université d'Oxford montre que le métabolite du Prontosil est un inhibiteur de la synthèse d'une enzyme, le tétrahydrofolate, qui est impliqué dans les transferts d'enchaînement en C1 dans des étapes de biosynthèse de la bactérie. Cette inhibition chez l'homme est compensée par l'apport d'acide folique par l'alimentation.
Pour développer des médicaments, il faut absolument comprendre comment la molécule ingérée va être transformée et quel est son mécanisme d'action.
La mise sur le marché américain du Prontosil conduit à un drame. La première formulation du médicament aux Etats-Unis va se faire avec de l'éthylène glycol ou antigel comme excipient, conduisant au décès de 76 personnes. Les autorités fédérales américaines réagissent immédiatement en créant la Food and Drug Administration (FDA) qui va édicter des règles strictes sur l'évaluation pré-clinique et clinique des futurs médicaments. Après un certain empirisme des bonnes pratiques sont mises en place et les procédures de fabrication bien plus encadrées au point de vue scientifique.
En 1930, Flemming identifie à partir d'un champignon un produit capable de tuer les bactéries, c'est la pénicilline. Il faudra attendre la deuxième guerre mondiale et l'effort de guerre des américains pour avoir une production industrielle de la pénicilline. Cette production en masse en 1942-1943 a nécessité la mobilisation de plus de mille scientifiques de très haut niveau pour résoudre les problèmes posés par la fermentation, l'extraction et la purification par des méthodes chimiques industrielles à très grande échelle. L'un des précurseurs chimiques de la pénicilline, le précurseur des céphalosporines est produit actuellement à raison de 45 000 tonnes par an dans d'immenses cuves de fermentation d'une dizaine de mètres cubes.

Pendant une centaine d'années, de la fin du XIXème jusqu'aux années 1980, les seuls outils thérapeutiques ont été les vaccins et des petites molécules. Pasteur a préparé son vaccin contre la rage à partir de la moelle épinière de lapins infectés. À sa suite, de grands succès sont obtenus par les vaccins dans la lutte contre la diphtérie, le tétanos, la poliomyélite, la variole, les hépatites A et B, la grippe, ... Les petites molécules utilisées dans les centaines de nouveaux médicaments développés à cette période sont alors des produits naturels, le plus souvent extraits de végétaux, ou bien des produits de synthèse chimique. Les découvertes étaient quasi-routinières au cours du XXème siècle et l'espérance de vie a augmenté.
À partir de 1970, la biologie devient véritablement moléculaire. Des outils créés par les physiciens dans les années 1930-1940, comme la diffraction des rayons X sur nano-cristaux, la résonance magnétique nucléaire, la spectrométrie de masse, sont utilisés par les chimistes pour étudier les petites molécules. Le perfectionnement de l'instrumentation va permettre d'utiliser ces techniques sur les macromolécules. Aux cours des années 1990-95, la facilité de résolution des structures d'enzymes est alors équivalente à celle d'une petite molécule chimique en 1970. Des milliers de structures de protéines ou d'acides nucléiques sont maintenant disponibles. La compréhension du vivant et la compréhension des produits chimiques deviennent équivalentes.
Il y a quarante ans, la découverte de la structure de l'hémoglobine a valu un prix Nobel à Max Perutz, de l'université de Cambridge. La structure de la pénicilline et de la vitamine B12 vaut un autre prix Nobel à Dorothy Hodgkin à Oxford, à peu près à la même époque. Maintenant, la publication de la structure d'une protéine se fait dans des journaux classiques et elle est directement archivée sur des banques de données. Les trente dernières années du XXème siècle ont vu une accélération extraordinaire de la connaissance moléculaire du domaine du vivant.
Les années 1965-1980 ont été celles de la découverte des outils pour étudier les gènes, notamment les enzymes de restrictions qui coupent les gènes et les ligases qui recollent les morceaux. De la compréhension du fonctionnement des gènes aux manipulations génétiques, il n'y a eu qu'un pas rapidement franchi. C'est le monde de la biotechnologie moderne où les choses ne sont plus laissées au hasard et où l'expérimentateur peut intervenir. Le séquençage des génomes, de l'homme comme des agents pathogènes, se systématise. La connaissance du génome des agents pathogènes, virus et bactéries, permet l'amélioration des outils de diagnostic et l'identification de nouvelles cibles thérapeutiques. La compréhension des maladies d'origine génétique ouvre la voie aux corrections des erreurs génétiques par la thérapie génique.

La connaissance du génome ouvre la voie à de nouvelles techniques. La génomique est l'accessibilité de la totalité de l'information génétique d'une espèce vivante. La protéomique est la possibilité d'exprimer toute protéine à partir du génome. La pharmacogénomique est la possibilité d'adapter un traitement thérapeutique selon le profil métabolique de chaque individu. Les connaissances sur la capacité des individus à métaboliser ou à ne pas métaboliser, sur leurs réactions vis-à-vis d'un médicament, permettent d'imaginer dans le futur de pouvoir adapter les posologies en fonction du patrimoine génétique de chacun. Quant à la robotique, elle permet à des mini-robots de paillasse de réaliser des milliers de molécules et d'essais biologiques in vitro. Ils atteignent rapidement leurs limites car ils produisent toujours les mêmes produits en utilisant les mêmes réactions avec une diversité structurale par trop limitée. De plus, les tests in vitro ne prennent pas en compte les problèmes de biodisponibilité, de pénétration et de passage de membrane.

Le rôle du chimiste dans l'innovation thérapeutique en ce début de XXIème siècle va être essentiel car il est formé et entraîné pour comprendre les choses au niveau moléculaire. Il pourra travailler avec des biochimistes, avec des spécialistes de biologie moléculaire, de biologie cellulaire, de toxicologie, de pharmacologie, de médecine clinique. Les raisonnements en termes moléculaires font tomber les barrières de spécialités ( au singulier dans le sens de barrières liées à la spécialité / au pluriel mais alors écrire barrière des spécialités) mais le champ des connaissances nécessaires pour aller d'un domaine à l'autre dépasse souvent les capacités individuelles. Le chimiste moderne doit maîtriser la chimie de base et plusieurs domaines de la biologie. La biochimie est devenue une partie intégrante de la chimie, de même que l'enzymologie moléculaire. Les biologistes et les médecins doivent également avoir des bases élémentaires solides en chimie thérapeutique et en pharmacologie. Il faut des médecins qui restent au pied du malade en ayant cette capacité à discuter avec d'autres médecins qui sont impliqués dans la recherche clinique, à la recherche de médicaments. Les numerus clausus doivent être révisés régulièrement de manière intelligente pour éviter de créer des pénuries de médecins praticiens, s'il s'agit des cliniciens sinon chercher un synonyme à pratiquant qui renvoie à religion voire le supprimer.
Les chimistes créatifs vont continuer à être des acteurs clés dans l'industrie pharmaceutique du futur. Le « rational drug design » est le développement de la création rationnelle de nouveaux pharmacophores. La compréhension au niveau moléculaire du monde du vivant conduit à la création d'objets chimiques parfaitement adaptés à une utilisation en tant qu'outils thérapeutiques.
La chimie des produits naturels va continuer à se développer car la nature est une source d'inspiration de nouvelles structures de haute diversité.

La chimie théorique, avec des ordinateurs de plus en plus puissants et mieux utilisés, va permettre de faire des prédictions de l'interaction de molécules avec des systèmes biologiques et des sites pharmacologiques.
Selon les étapes de la création et de développement d'un médicament, différents métiers interviennent successivement : les chimistes et les biologistes sont les plus impliqués dans les phases de découverte pré-clinique alors que les médecins prennent le relais en phase clinique. Dès les premiers essais cliniques, les statisticiens ont un rôle primordial de prédiction du rapport bénéfice/risque afin d'éviter, par exemple, d'attendre le traitement de dizaines de milliers de personnes pour identifier d'éventuels effets secondaires néfastes.
La diversification des outils dans l'arsenal thérapeutique du XXIème siècle est une combinaison de réalité, d'espoirs et de rêves. Les macromolécules biologiques, traitées comme des objets chimiques, font maintenant partie, et prendront une part de plus en plus importante dans l'arsenal thérapeutique du futur. L'hormone de croissance, l'érythropoïétine capable de stimuler la production de globules rouges, sont produites par génie génétique.

Les thérapies génique et cellulaire sont encore du domaine de l'espoir. La thérapie génique est l'utilisation de gènes ou de molécules capables de modifier l'expression génétique pour traiter des maladies d'origine génétique. La thérapie cellulaire est l'utilisation de cellules souches pour réparer des dégâts au sein de tissus et d'organes.
Pour favoriser l'innovation thérapeutique, il faut favoriser la créativité dans tous les domaines. Il faut, à la fois, des chercheurs de très grande qualité en recherche fondamentale et des chercheurs de très grande qualité en recherche appliquée. La recherche fondamentale est indispensable pour le développement des recherches appliquées, mais, il arrive parfois que des résultats soient appliqués avant la compréhension complète des processus scientifiques sous-jacents. Chaque génération a sa proportion de talent et je souhaite que beaucoup s'intéressent à la fois à la chimie et à la thérapie et contribuent dans le futur à la création de médicaments de plus en plus efficaces et de plus en plus sûrs.
[1] Transcription réalisée par Juliette Roussel
[2] M. Madella et al, J. Archaeolog. Sci. 29, 703-719 (2002)

 

  VIDEO       CANAL  U         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google