|
|
|
|
|
|
Les ondes électromagnétiques dans le domaine de la communication |
|
|
|
|
|
Les ondes électromagnétiques dans le domaine de la communication
Publié le 31 mai 2018
Dernière mise à jour : août 2022
Qu’est-ce qu’une onde électromagnétique ? Quelles sont les ondes qui nous permettent de communiquer quasi instantanément d’un bout à l’autre du monde ? En quoi les ondes radio jouent-elles un rôle fondamental dans les télécommunications ? Comment fonctionne un système mobile sans fil ? Quelles sont les différentes générations de réseaux mobiles ? Quels sont les enjeux et promesses de la 5G ? L’essentiel sur… les ondes électromagnétiques utilisées dans le domaine de la communication.
QU’EST-CE QU’UNE ONDE ÉLECTROMAGNÉTIQUE ?
Une onde électromagnétique est une catégorie d’ondes qui peut se déplacer dans un milieu de propagation comme le vide ou l’air, avec une vitesse avoisinant celle de la lumière, soit près de 300 000 kilomètres par seconde. Ces ondes sont par exemple produites par des charges électriques en mouvement. Elles correspondent aux oscillations couplées d’un champ électrique et d’un champ magnétique, dont les amplitudes varient de façon sinusoïdale au cours du temps.
Les ondes électromagnétiques transportent de l’énergie mais elles sont aussi capables de transporter de l’information. C’est pourquoi elles sont utilisées dans le domaine de la communication.
Vidéo
Qu'est-ce qu'une onde électromagnétique ?
SD <div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div> VOIR DANS LA MÉDIATHÈQUE
Concrètement, les ondes électromagnétiques servent à faire fonctionner les smartphones, les postes de radio, ou encore sont utilisées pour faire des radiographies du corps humain. De même, la lumière visible est une onde électromagnétique ; elle nous permet de voir les couleurs.
Ces différentes ondes électromagnétiques se différencient et sont caractérisées par leur fréquence, c’est-à-dire le nombre d’oscillations en une seconde. La fréquence est exprimée en Hertz. Une autre caractéristique des ondes électromagnétiques est la longueur d’onde, c’est-à-dire la distance qui sépare deux oscillations de l'onde. Elle est inversement proportionnelle à la fréquence.
Les ondes électromagnétiques sont classées en fonction de leur fréquence dans ce que l’on appelle le « spectre électromagnétique ».
Dans l’ordre des longueurs d’ondes croissantes, on trouve :
Longueur d’onde (mètre) Fréquence (Hertz) Catégorie d'onde électromagnétique
< 10 picomètres (ie 1 000 milliards de fois plus petit qu’un mètre) 30 x 1018 Hz Les rayons gamma, produits par des transitions nucléaires
10 picomètres – 10 nanomètres (ie 1 000 millions de fois plus petit qu’un mètre) 30 x 1018 – 30x1015 Hz Les rayons X, qui permettent de faire des radiographies du corps humain
10 nanomètres – 400 nanomètres 30x1015 - 750x1012 Hz Les rayons ultra-violet (UV), qui proviennent majoritairement du Soleil et sont responsables par exemple du bronzage ou des coups de soleil.
400 – 800 nanomètres 750x1012 – 375x1012 Hz La lumière visible avec toutes les couleurs de l’arc-en-ciel.
800 nanomètres – 0,1 millimètre 375x1012 – 3x1012 Hz Les rayons infrarouges, qui captent la chaleur des objets, de l’environnement.
1 millimètre - 30 kilomètres 300x109Hz - 10Hz Les ondes radio, responsables des moyens de télécommunications qu’on connaît aujourd’hui : les radars et satellites, le réseau Wi-Fi, le téléphone portable, la télévision hertzienne et la radio.
L’HISTOIRE DES SYSTÈMES ET RÉSEAUX DE TÉLÉCOMMUNICATION
L’histoire des télécommunications commence en 1794, quand Claude Chappe met au point le télégraphe optique. Deux tours d’observations éloignées de plusieurs dizaines de kilomètres s’échangent des messages codés par les différentes positions d’un bras articulé placé en haut de la tour.
Il faudra attendre la fin du 19e siècle et la découverte de l’existence des ondes électromagnétiques par le physicien allemand Heinrich Hertz pour que se développe la transmission d’informations sans fil.
Vidéo
L'histoire des systèmes et réseaux de télécommunications
SD <div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div> VOIR DANS LA MÉDIATHÈQUE
Depuis vingt ans, nous sommes entrés dans un monde où tout devient sans fil. Après la radio et la télévision, le téléphone a d’abord lâché son fil à la maison pour devenir mobile, nos ordinateurs communiquent aujourd’hui via le wi-fi. Depuis début 2018, le monde compte plus de 4 milliards d’utilisateurs d’Internet et plusieurs millions de mails sont envoyés chaque seconde. Et ce n’est pas fini ! L’Internet des Objets se développe, et part à l’assaut de nouveaux secteurs comme la domotique, la santé connectée, l’usine du futur et les véhicules autonomes.
Le réseau 5G qui est disponible en France depuis fin 2020 connectera toujours plus d’objets sans fil, avec un meilleur débit et plus de rapidité. A la clé : une plus grande fiabilité de transmission.
LE PRINCIPE DE FONCTIONNEMENT DE LA RADIO
Les ondes radio, qui servent à transmettre des informations, ont des fréquences comprises entre quelques kilos Hertz et 300 giga Hertz, c’est-à-dire 300 milliards d’oscillations par seconde.
Parmi les ondes qui passent par les postes de radio, on trouve :
* La radio AM avec une fréquence de 106Hz et une portée de plusieurs centaines de kilomètres, autrefois très utilisée.
* La radio FM avec une fréquence de 108Hz et une portée de quelques dizaines de kilomètres. La radio FM est la plus écoutée aujourd’hui.
Les antennes permettent de rayonner les ondes radio se propageant dans l’air. Pour diffuser une émission de radio par exemple, la voix de l'animateur est transformée en signal électrique par le micro. Ce signal électrique oscille au même rythme que la voix, on dit qu'ils ont la même fréquence. Cependant, cette fréquence est beaucoup trop basse pour que le signal soit transmis sous forme d'onde électromagnétique. Il est donc nécessaire de fabriquer un signal électrique alternatif à très haute fréquence transmis à l’antenne pour qu'elle émette d'abord une onde porteuse. Pour transporter la voix par exemple, il faut alors mélanger notre signal électrique de basse fréquence, celui qui correspond à la voix de l’animateur, au signal électrique de haute fréquence.
Il existe par exemple deux façons de faire :
* Pour la radio AM, on change l’amplitude, c’est à dire la hauteur des oscillations du signal électrique en fonction du signal de la voix. L’onde porteuse est modulée en amplitude.
* Pour la radio FM, on change la fréquence, c’est à dire le nombre d’oscillations par seconde du signal électrique en fonction du signal de la voix. L’onde porteuse est modulée en fréquence. La modulation en fréquence est beaucoup plus fiable ; il y aura moins de grésillements qu'avec la modulation d'amplitude.
Dans les deux cas, l’antenne émet une onde électromagnétique modulée qui se propage jusqu'à une antenne réceptrice, comme celle intégrée dans les postes de radio. Ensuite, elle fait le travail inverse de l'antenne émettrice : elle transforme l'onde électromagnétique en signal électrique, ce dernier est démodulé, soit en amplitude soit en fréquence, puis amplifié et transformé en son par les enceintes.
COMMENT FONCTIONNE UN SYSTÈME MOBILE
SANS FIL ?
Pour que nos fichiers ou SMS puissent parvenir jusqu’à leur destinataire, l’information à envoyer est d’abord codée en langage binaire (combinaisons de zéro et un) puis présentée en entrée de la carte électronique de l’émetteur du système de communication sans fil, par exemple un téléphone.
Ensuite, le signal numérique correspondant au message binaire est transformé en signal analogique à haute fréquence (fréquences radio). Ce dernier est envoyé à une antenne, qui se met alors à rayonner une onde électromagnétique se propageant dans l’air pour atteindre l’antenne relais la plus proche. L'onde est ensuite encore transformée en signal électrique, pour être transmise via des câbles ou des fibres optiques sur de très grandes distances, jusqu’à enfin atteindre l’antenne relais la plus proche du destinataire. Le processus de réception est le même que celui d’envoi, en inversé. La carte électronique du système de communication du récepteur décode le langage binaire pour afficher le SMS, l’image ou bien la vidéo.
LES DIFFÉRENTES GÉNÉRATIONS DE RÉSEAUX MOBILES : DE LA 2G À LA 5G
La fin des années 1990 sonne le début de l’ère des téléphones portables, le réseau dit « 2G » (ou GSM) est lancé. Il permet de transmettre la voix mais aussi des données numériques comme les SMS ou des messages multimédias, avec du contenu léger (MMS). Les réseaux GPRS et EDGE offrent un accès à Internet mais avec un débit très bas.
La 3G se commercialise au début des années 2000. Le débit est alors plus rapide que pour la 2G et les téléphones peuvent alors accéder à Internet beaucoup plus rapidement, même en mouvement.
En 2012, la 4G fait son arrivée en France, le débit maximal est multiplié par 100, ce qui permet le développement des objets connectés et des réseaux sociaux.
Le réseau 5G est disponible depuis fin 2020 en France et se déploie dans le monde entier. Il constitue une véritable rupture technologique, présentant de nombreuses innovations. Ses atouts ? Un débit 50 fois plus important que la 4G et un temps d’acheminement des données beaucoup plus court (jusqu’à 1ms, contre 10ms avec la 4G).
La 5G pourra occuper des bandes de fréquence entre 800MHz et 56GHz. Les fréquences les plus hautes appartiennent au domaine des ondes millimétriques (allant de 30 à 300 GHz). A ces fréquences-ci, l’atténuation des ondes avec la distance parcourue est plus importante mais les antennes sont plus petites que celles utilisées pour la 4G. Dans un même espace, il sera donc possible d'en associer beaucoup plus pour augmenter la puissance reçue (ou émise) dans certaines directions et ainsi, suivre plusieurs utilisateurs mobiles tout en limitant les interférences. Le développement d’applications telles que les voitures autonomes ou les objets connectés devrait être facilité par la 5G.
Notions clés :
* Les ondes électromagnétiques transportent de l’énergie mais elles sont aussi capables de transporter de l’information.
* Les ondes électromagnétiques se différencient et sont caractérisées par leur fréquence, c’est-à-dire le nombre d’oscillations en une seconde.
DOCUMENT cea LIEN
|
|
|
|
|
|
|
PILE |
|
|
|
|
|
pile
(latin pila, pilier)
Consulter aussi dans le dictionnaire : pile
Cet article fait partie du dossier consacré à l'électricité.
Appareil transformant directement en énergie électrique l'énergie développée dans une réaction chimique.
ÉLECTRICITÉ
LES PILES ÉLECTRIQUES
LA PILE DE VOLTA
L'association de deux électrodes et de leurs solutions respectives constitue une pile électrochimique. Historiquement, cette dénomination provient de la première réalisation d'un tel dispositif par Alessandro Volta, en 1800, grâce à l'empilement de séries de disques de cuivre et de zinc en contact direct, chaque couple de disques zinc-cuivre étant séparé par une rondelle de carton humide.
LA PILE DANIELL
Inventée en 1836 par John Frederic Daniell, elle est constituée par une lame de cuivre et une lame de zinc, chacune plongeant dans une solution de l'un de ses sels. Par suite de l'existence de la différence de potentiel métal/solution, lorsque les deux compartiments communiquent par une jonction électrique, il s'établit une tension entre les deux conducteurs métalliques. Quand la pile fonctionne, le courant va du pôle + au pôle −, ce qui correspond à une circulation d'électrons en sens inverse. Au total, il y a dépôt de cuivre et dissolution du zinc, selon la réaction globale : Cu2+ + Zn → Zn2+ + Cu. C'est la réaction qui se produit spontanément si on trempe une lame de zinc dans une solution d'ions cuivriques. Mais l'intérêt du montage précédent est de permettre la récupération de l'énergie de cette réaction sous forme d'électricité. (→ électrochimie.)
LA PILE LECLANCHÉ ET SES VARIANTES
Les piles les plus utilisées sont les piles du type Leclanché, mises au point en 1868 par l’ingénieur français Georges Leclanché. Elles sont constituées par une électrode zinc (pôle négatif) en contact avec une solution gélifiée de chlorure d'ammonium. Le pôle positif est une tige de carbone aggloméré avec un oxydant, le bioxyde de manganèse. La force électromotrice obtenue est voisine de 1,5 V.
De nombreuses variantes de piles existent : piles alcalines, piles au mercure, etc. Toutes ont cependant en commun de ne pas être rechargeables.
LES PILES RECHARGEABLES
Le développement des appareils de photo numérique, des lecteurs de musique MP3, des téléphones et des ordinateurs portables s'accompagne d'un essor des « piles » rechargeables, qui sont en fait des accumulateurs (ou batteries) miniaturisés, dont il existe différents types : nickel-cadmium, nickel-métal-hydrure, lithium-ion, lithium-polymère.
LA PILE À COMBUSTIBLE
HISTORIQUE
Dans son principe, la pile à combustible repose sur la réaction inverse de l'électrolyse de l'eau (décomposition en hydrogène et oxygène par un courant électrique) : l'oxydation de l'hydrogène produit de l'eau et de l'électricité. Le principe de ce type particulier de pile électrique a été découvert en 1802 par le Britannique Humphry Davy et c'est son compatriote William Robert Grove (1811-1896) qui a construit, en 1839, la première cellule combinant l'hydrogène et l'oxygène. Les premières piles à combustible opérationnelles ont été réalisées au milieu du xxe s. aux États-Unis, et ont été utilisées comme générateurs électriques pour les vaisseaux spatiaux habités américains (programmes Gemini et Apollo). Elles ont connu ensuite d'autres applications, notamment dans le domaine militaire.
PERSPECTIVES
Aujourd'hui, avec l'attention portée à la protection de l'environnement et les craintes suscitées par l'appauvrissement progressif des ressources énergétiques fossiles, la pile à combustible fait l'objet d'intenses recherches. Non polluante (pas de rejets de gaz à effet de serre), silencieuse et d'un excellent rendement énergétique, elle présente d'importants atouts pour contribuer, dans le futur, à la production d'énergie (électricité et chaleur) et à la propulsion des véhicules automobiles. Cependant, c'est un dispositif qui reste pour l'instant très coûteux.
L'un des modèles de pile à combustible les plus étudiés aujourd'hui est la pile à membrane échangeuse de protons. Elle comprend deux électrodes minces et poreuses séparées par une membrane de polymère qui ne laisse passer que les protons. Des catalyseurs recouvrent une face de chaque électrode. Quand l'hydrogène entre dans le dispositif, il est décomposé en électrons et en protons par le catalyseur qui recouvre l'anode. Les électrons circulent dans un circuit externe et actionnent un moteur électrique, tandis que les protons migrent à travers la membrane jusqu'à la cathode. Le catalyseur qui recouvre la cathode combine les protons avec les électrons qui, avec l'oxygène de l'air, forment de l'eau.
DOCUMENT larousse.fr LIEN |
|
|
|
|
|
|
Les 4 interactions fondamentales |
|
|
|
|
|
Les 4 interactions fondamentales
Publié le 2 juin 2022
Quatre interactions fondamentales régissent l’Univers : l’interaction électromagnétique, l’interaction faible, l’interaction nucléaire forte et l’interaction gravitationnelle. Les interactions électromagnétiques forte et faible sont décrites par le modèle standard de la physique des particules, qui est en cohérence avec la physique quantique, tandis que l’interaction gravitationnelle est actuellement décrite par la théorie de la relativité générale. Quelles sont les propriétés de chacune de ces interactions ? Quel est leur impact sur notre quotidien ? Quels sont les enjeux de la recherche sur les interactions fondamentales ?
L’INTERACTION ÉLECTROMAGNÉTIQUE (FORCE ÉLECTROMAGNÉTIQUE)
L’interaction électromagnétique régit tous les phénomènes électriques et magnétiques. Elle peut être attractive ou répulsive : par exemple, deux pôles d’aimants de même signe (« nord » ou « sud ») vont se repousser alors que deux pôles d’aimants de signe opposé vont s’attirer.
Cette interaction est liée à l’existence de charges électriques et est notamment responsable de la cohésion des atomes en liant les électrons (charge électrique négative) attirés par le noyau de l’atome (charge électrique positive).
Le photon est la particule élémentaire associée à l’interaction électromagnétique. Il est de charge électrique nulle et sans masse, ce qui fait que cette interaction a une portée infinie.
J.C. Maxwell écrit, vers 1864, la théorie de l’électromagnétisme qui explique l’existence d’ondes électromagnétiques (ondes radio, infra-rouge, lumière, ultra-violet, rayons X et gamma). Leur importance n’est plus à démontrer. Dans la seconde moitié du XXe siècle, cette théorie a été reformulée grâce notamment aux travaux du physicien Feynman sous la forme de l’électrodynamique quantique pour y introduire les concepts quantiques de façon cohérente et qui décrit l’interaction comme un échange de photons.
L’INTERACTION FAIBLE (FORCE FAIBLE)
L’interaction faible est la seule qui agit sur toutes les particules, excepté sur les bosons. Responsable de la radioactivité Bêta, elle est donc à l’origine de la désintégration de certains noyaux radioactifs.
Le rayonnement Bêta est un rayonnement émis par certains noyaux radioactifs qui se désintègrent par l'interaction faible. Le rayonnement β+ (β-) est constitué de positons (électrons) et se manifeste lorsqu’un proton (neutron) se transforme en neutron (proton). Un neutrino (antineutrino) électronique est également émis. Ce rayonnement est peu pénétrant : un écran de quelques mètres d'air ou une simple feuille d'aluminium suffisent pour l’arrêter.
Les particules élémentaires associées à l’interaction faible sont le boson neutre (le Z0) et les deux bosons chargés (les W+ et W−). Ils ont tous une masse non nulle (plus de 80 fois plus massifs qu’un proton), ce qui fait que l’interaction faible agit à courte portée (portée subatomique de l’ordre de 10-17 m).
La datation au carbone 14 est possible grâce à l’interaction faible. Le carbone 14 est un isotope radioactif du carbone qui se transforme en azote 14 par désintégration Bêta moins. Sa période radioactive, temps au bout duquel la moitié de ses atomes s’est désintégrée, est de 5 730 ans. La technique du carbone 14 permet de dater des objets de quelques centaines d’années à 50 000 ans environ.
Le neutrino
Le neutrino, particule élémentaire du modèle standard, n’est sensible qu’à l’interaction faible. Le neutrino est un lepton du modèle standard de la physique pouvant prendre trois formes (ou saveurs) : le neutrino électronique, muonique et tauique. Les neutrinos n'ont pas de charge électrique et ont une masse très faible dont on connaît seulement une borne supérieure. Ils se transforment périodiquement les uns en les autres selon un processus appelé "oscillation des neutrinos". N'étant sensibles qu'à l'interaction faible, les neutrinos n'interagissent que très peu avec la matière si bien que pour absorber 50 % d'un flux de neutrinos, il faudrait lui opposer un mur de plomb d'une année-lumière d'épaisseur. >> En savoir plus sur les neutrinos
L’INTERACTION NUCLÉAIRE FORTE OU INTERACTION FORTE (FORCE FORTE)
L’interaction forte permet la cohésion du noyau de l’atome. Elle agit à courte portée au sein du proton et du neutron. Elle confine les quarks, particules élémentaires qui composent les protons et neutrons, en couples "quark−antiquark" (mésons), ou dans des triplets de quarks (un ou deux autres (anti) quarks) (baryons). Cette interaction se fait par l'échange de bosons appelés "gluons".
Le gluon est la particule élémentaire liée à l’interaction forte. La charge associée à cette interaction est la "charge de couleur". Lors de l'échange d'un gluon entre deux quarks, ils intervertissent leurs couleurs. L’interaction entre deux quarks est attractive et d’autant plus intense que ceux-ci sont distants l’un de l’autre, et est quasi nulle à très courte distance.
La réaction primordiale de fusion de deux protons en deutéron (un isotope naturel de l’hydrogène dont le noyau contient un proton et un neutron) est un processus dû à l’interaction faible dont le taux gouverne la lente combustion des étoiles. C’est ensuite l’interaction forte qui est à l’œuvre dans les chaînes de réactions nucléaires qui suivent et qui produisent d’autres noyaux.
Cette interaction est notamment responsable des réactions nucléaires qui ont lieu au sein du Soleil.
La réaction de fusion nucléaire
Les quarks portent une charge de couleur qui est à l’interaction forte ce que la charge électrique est pour la force électromagnétique. Un quark peut avoir trois couleurs, appelées par convention rouge, bleu et vert. Un antiquark a l’une des « anticouleurs » correspondantes : antirouge, antibleu et antivert.
Les quarks forment des particules composites « blanches », c’est-à-dire sans charge de couleur. Il y a deux manières de former ces hadrons : soit en combinant un quark et un antiquark dont la couleur et l’anticouleur s’annulent (par exemple rouge et antirouge) ; on parle alors de « méson ». Soit en associant trois quarks porteurs chacun d’une couleur différente ; de telles particules sont appelées « baryons » – par exemple le proton et le neutron.
L'INTERACTION GRAVITATIONNELLE (FORCE GRAVITATIONNELLE)
Dans la vision de la loi de la gravitation universelle de Newton, l’interaction gravitationnelle est celle qui agit entre des corps massifs. La force est attractive. La pesanteur et les mouvements des astres sont dus à la gravitation.
Dans le cadre de la relativité générale, la gravitation n’est pas une force mais une manifestation de la courbure de l’espace-temps. La gravitation ne fait pas partie du modèle standard, elle est décrite par la relativité générale. Elle se définit par la déformation de l’espace-temps.
La gravitation est la plus faible des quatre interactions fondamentales. Elle s'exerce à distance et de façon attractive entre les différentes masses. Sa portée est infinie.
La première théorie la décrivant efficacement est celle de Newton en 1687. Pesanteur, mouvements planétaires, structure des galaxies sont expliqués par la gravitation. En 1915, elle est remplacée par la théorie de la relativité générale d’Einstein qui sert de cadre à la description de l’Univers entier et où les masses déforment l’espace-temps au lieu d’y exercer des forces à distance.
A ce jour, on ne sait pas décrire l’interaction gravitationnelle par la mécanique quantique, et on ne lui connaît aucun boson médiateur. Au niveau théorique, la gravitation pose problème car on ne sait pas la décrire à l’aide du formalisme de la « théorie quantique des champs », utilisé avec succès pour les trois autres interactions. L’hypothétique graviton serait la particule médiatrice de la gravitation dans une description quantique de cette interaction.
PORTÉE DE L'INTERACTION ENTRE DEUX CORPS
La masse du boson vecteur (ou médiateur) va définir la portée de l’interaction. Imaginez deux particules en interaction comme deux personnes se lançant une balle, représentant le boson vecteur : plus la balle est légère, plus ils peuvent la lancer loin. Par analogie, plus le boson vecteur est léger, plus la portée de l’interaction est grande.
* Force forte :
Particules médiatrices (boson vecteurs) : gluons
* Domine dans : noyau atomique
* Force électromagnétique
Particules médiatrices (boson vecteurs) : photons
* Domine dans : électrons entourant le noyau
* Force faible
Particules médiatrices (bosons vecteurs) : Boson Z0, W+, W-
Domine dans : Désintégration radioactive bêta
* Gravitation
Particules médiatrices (bosons vecteurs) : Graviton ? (pas encore observé)
Domine dans : Astres .
Notions clés
* Interactions fondamentales et particules élémentaires : chacune des trois interactions fondamentales décrites par le modèle standard, à savoir l’interaction électromagnétique, l’interaction faible et l’interaction nucléaire forte - est associée à une ou plusieurs particule(s) élémentaire(s), les bosons. Ainsi, l’interaction forte est véhiculée par les gluons ; le photon transmet l’interaction électromagnétique tandis que les trois autres bosons sont responsables de l’interaction faible.
* Spectre électromagnétique : le spectre du rayonnement électromagnétique s’étend des ondes radio aux rayons gamma en passant par les micro-ondes, l’infrarouge, la lumière visible, l’ultraviolet et les rayons X. Ce sont tous des rayonnements électromagnétiques qui ne différent que par la fréquence de l’onde. Pour en savoir plus, consulter L'essentiel sur les ondes électromagnétiques.
* Le graviton est une particule hypothétique de la famille des bosons, médiateur de l'interaction gravitationnelle. Il s'agirait d'une particule de masse nulle, de charge électrique nulle et de spin égal à 2.
LA THEORIE DU TOUT : VERS L’UNIFICATION DES INTERACTIONS FONDAMENTALES ?
L’objectif des recherches est de trouver une théorie qui expliquerait simultanément les quatre interactions fondamentales.
L’unification des quatre interactions fondamentales fait partie des axes de recherche principaux de la physique des particules. Une première étape a été franchie il y a une trentaine d’années avec l’unification de l’interaction faible et de la force électromagnétique dans un même cadre : l’interaction électrofaible. Celle-ci se manifeste à haute énergie – environ 100 GeV. La suite logique de ce processus est d’y ajouter l’interaction forte. Mais, si convergence il y a, elle ne devrait se manifester qu’à des échelles d’énergie encore bien plus élevées (1015 ou 1016 GeV), totalement hors de portée des expériences actuelles. L’étape ultime, l’ajout de la gravité à ce formalisme, est encore plus éloignée et se heurte à des problèmes mathématiques non résolus pour le moment.
La théorie des cordes et la théorie de la gravitation quantique à boucles sont les deux cadres théoriques les plus étudiés aujourd’hui.
Les théories de dimensions supplémentaires, dont la théorie des cordes, ont été initialement proposées pour résoudre le problème de l’extrême faiblesse de la gravité. L’une des réponses serait que seule une petite fraction de la force gravitationnelle n’est perceptible, le reste agissant dans une ou plusieurs autres dimensions. Ces dimensions, imperceptibles, seraient courbées et non plates comme les quatre connues de l’espace et du temps.
Les cordes seraient des petits brins d’énergie en vibration qui seraient reliées dans plusieurs « branes » (des cordes qui se seraient étirées et transformées en grandes surfaces). Les branes seraient comme des barrières entre plusieurs dimensions, jusqu’à 10, mais ces dimensions supplémentaires nous sont invisibles.
Toute la physique fondamentale serait unifiée, c’est-à-dire la mécanique quantique avec la relativité générale.
La gravité quantique à boucles a pour but de quantifier la gravitation. Elle a notamment pour conséquences que le temps et l’espace ne sont plus continus, mais deviennent eux-mêmes quantifiés (il existe des intervalles de temps et d’espace indivisibles). La gravité quantique à boucles cherche à combiner la relativité générale et la mécanique quantique directement, sans rien y ajouter.
Cependant, à ce jour, aucune théorie unique ne peut expliquer de façon cohérente toutes les interactions.
DOCUMENT cea LIEN |
|
|
|
|
|
|
La radioprotection |
|
|
|
|
|
La radioprotection
Pour protéger la population et les travailleurs, des mesures ont été fixées à l’échelle internationale et nationale.
Publié le 1 juillet 2014
LES RÈGLES DE RADIOPROTECTION
La radioprotection est un ensemble de mesures destinées à assurer la protection sanitaire de la population et des travailleurs.
Trois règles de protection contre toutes les sources de rayonnements sont :
* s’éloigner de la source de rayonnements, car leur intensité diminue avec la distance ;
*
* mettre un ou plusieurs écrans entre la source de rayonnements et les personnes (par exemple, dans les industries nucléaires, de multiples écrans protègent les travailleurs. Ce sont des murs de béton, des parois en plomb et des verres spéciaux chargés en plomb) ;
*
* diminuer au maximum la durée de l’exposition aux rayonnements.
Ces mesures de radioprotection peuvent être comparées à celles que l’on prend contre les ultraviolets : utilisation d’une crème solaire qui agit comme un écran et limitation de l’exposition au Soleil.
* attendre, quand cela est possible, la décroissance naturelle radioactive des éléments ;
*
* utiliser la dilution lorsque l’on a affaire à des gaz radioactifs.
Par exemple, les installations nucléaires ne sont pas démantelées aussitôt après leur arrêt, de façon à attendre une diminution de l’activité des zones. Dans les mines d’uranium souterraines, une ventilation très efficace permet de maintenir une faible concentration de radon dans l’air que respirent les mineurs.
Les travailleurs pouvant être soumis à des rayonnements ionisants lors de leur activité (industries nucléaires, médecins, radiologues…) portent dosimètres, gants, ceintures, bague qui mesurent la quantité de rayonnements auxquels ils ont été soumis. Ces dispositifs permettent de s’assurer que la personne n’a pas reçu une dose supérieure à la norme tolérée ou d’en mesurer la localisation et l’importance.
Plusieurs commissions indépendantes ont amené les autorités à fixer des normes réglementaires pour les limites de doses.
LES NORMES INTERNATIONALES DE RADIOPROTECTION
La prise de conscience du danger potentiel d’une exposition excessive aux rayonnements ionisants a amené les autorités à fixer des normes réglementaires pour les limites de doses. Ces limites correspondent à un risque supplémentaire minime par rapport au risque naturel, qui le rend donc acceptable.
* Depuis 1928, la Commission internationale de protection radiologique (CIPR) rassemble des médecins, physiciens, biologistes… de tous pays. Cette autorité scientifique indépendante émet des avis précieux en matière de radioprotection, pour les réglementations propres à chaque État.
*
* L’UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) réunit des scientifiques représentant 27 nations. Il a été créé en 1955 au sein de l’ONU pour rassembler le maximum de données sur les niveaux d’exposition dus aux diverses sources de rayonnements ionisants et leurs conséquences biologiques, sanitaires et environnementales. Il établit un bilan régulier de ces données, mais également une évaluation des effets en étudiant les résultats expérimentaux, l’estimation des doses, les données humaines.
*
* Au niveau européen, l’Union européenne reprend ces avis dans ses propres normes ou directives.
Les normes légales de radioprotection donnent :
* une limite de dose efficace de 1 mSv/an pour la population et de 20 mSv/an en moyenne sur 5 ans pour les personnes directement affectées aux travaux sous rayonnements ionisants (industrie nucléaire, radiologie médicale) ;
*
* une limite de dose équivalente (organe) de 150 mSv pour le cristallin (œil) et 500 mSv pour la peau et les mains.
Le législateur divise par 20 les doses admissibles des travailleurs pour la population car il considère que celle-ci comporte des sujets de tous âges, de tous états de santé et qui ne sont pas si bien suivis médicalement…
AU NIVEAU NATIONAL
En France, c’est l’Autorité de sûreté nucléaire (ASN), autorité administrative indépendante, créée en 2006, qui a en charge le contrôle de la sûreté et de la radioprotection. L’Institut de radioprotection et de sûreté nucléaire (IRSN), appui technique de l’ASN, est placé sous la tutelle conjointe des ministres chargés de la Défense, de l’Environnement, de l’Industrie, de la Recherche et de la Santé. Il a été créé en février 2002 par la réunion de l’Institut de protection et de sûreté nucléaire (IPSN) et de l’Office de protection contre les rayonnements ionisants (OPRI).
L’IRSN réalise des recherches, des expertises et des travaux dans les domaines de la sûreté nucléaire, de la protection contre les rayonnements ionisants, du contrôle et de la protection des matières nucléaires, et de la protection contre les actes de malveillance.
DOCUMENT cea LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] Précédente - Suivante |
|
|
|
|
|
|