ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

ORIGINE DE L'INTERRUPTION DE LA DIVISION DES OVOCYTES

 

Paris, 18 février 2014


Identification du mécanisme à l'origine de l'interruption de la division des ovocytes


Chez les animaux, les ovocytes, cellules reproductrices femelles, sont arrêtés dans leur cycle de différenciation pendant des mois ou des années, au sein des ovaires. Cette interruption du cycle intéresse les chercheurs depuis plusieurs décennies car il s'agit d'un mécanisme clé de la reproduction. Pourtant, malgré de nombreux travaux, les bases moléculaires de ce phénomène n'étaient pas bien connues. Une équipe du Laboratoire de biologie du développement (CNRS/UPMC) vient de dévoiler l'un des acteurs principaux de cette interruption du cycle. Les chercheurs ont montré, chez un modèle animal, le rôle central d'une protéine appelée ARPP19, laquelle, selon son état de phosphorylation(1), bloque la division des cellules, ou au contraire, l'induit. Ces travaux, qui viennent d'être publiés dans Nature Communications, apportent des informations cruciales sur la maturation des ovocytes et le contrôle de la division cellulaire. En outre, ils pourraient ouvrir de nouvelles pistes en matière de santé humaine.
L'interruption du cycle cellulaire des ovocytes est un phénomène conservé tout au long de l'évolution des animaux. Cet arrêt est essentiel pour la fonction de reproduction. S'il n'a pas lieu, les conséquences sont importantes : la croissance de l'ovocyte n'a pas le temps suffisant pour s'effectuer, produisant des gamètes impropres à la formation d'un embryon ; la cellule peut évoluer en embryon sans fécondation (parthénogenèse) et donner une descendance anormale ou non-viable. Enfin, le potentiel reproducteur de l'ovaire peut aussi s'épuiser rapidement.
Depuis les années 1970, on savait que, chez les vertébrés, l'un des chaînons de la cascade moléculaire permettant cette interruption du cycle était la protéine kinase A (PKA). Sous le contrôle d'un messager chimique, l'AMP cyclique, PKA est responsable de ce blocage. Lorsque, en réponse à un signal hormonal survenant au moment de l'ovulation, son activité baisse, le cycle de différentiation peut reprendre. Cependant, on ne connaissait pas l'étape suivante de la cascade de réactions, à savoir, la protéine sur laquelle agit PKA. Des expériences réalisées sur des ovocytes de xénope, batracien très utilisé dans les recherches sur la reproduction et l'embryologie, ont permis à l'équipe menée par Olivier Haccard de montrer que la cible qui est phosphorylée par PKA est une protéine appelée ARPP19.
Les chercheurs ont montré qu'ARPP19 a un rôle pivot dans le cycle de différenciation des ovocytes. Lorsqu'elle est phosphorylée par PKA, elle interrompt le cycle. Puis, en  réponse au signal hormonal de l'ovulation, c'est une autre protéine kinase appelée Greatwall qui à son tour, phosphoryle ARPP19 sur un autre site. Cette réaction a pour effet d'inverser l'action d'ARPP19 : d'inhibiteur de la division cellulaire, elle est alors convertie en un activateur essentiel de la division de l'ovocyte.
Ces travaux dévoilent donc une réaction-clé qui contrôle la maturation des ovocytes et donc la reproduction sexuée. La découverte d'une protéine capable, selon son état de phosphorylation, d'interrompre ou au contraire de provoquer la division, ouvre de nombreuses voies pour la compréhension de certaines infertilités féminines, voire même de nouvelles stratégies pour stopper la multiplication anarchique de cellules cancéreuses.

Notes :
(1) La phosphorylation est l'addition d'un groupe phosphate à une protéine ou à une petite molécule par une enzyme appelée kinase.

 

DOCUMENT            CNRS               LIEN

 
 
 
 

LA DIVERSITÉ IMMUNOLOGIQUE

 

Texte de la 429e conférence de l'Université de tous les savoirs donnée le 8 juillet 2002
Jean-Claude Weill,« La diversité immunologique »


Notre système immunitaire possède plusieurs qualités qui lui confèrent son efficacité. Tout d'abord, il est spécifique, et peut donc nous protéger contre une infection précise. Il peut aussi s'améliorer dans le temps, ce qui est une des propriétés de la vaccination : quand il a rencontré un agent pathogène une première fois, l'organisme sait mieux se défendre les fois suivantes. De plus, il est doté d'une mémoire : après vaccination, les lymphocytes qui nous protègent le mieux vont être conservés dans l'organisme pendant vingt ou trente ans et cela sans que l'on sache encore comment. Enfin, à l'aide d'un système de filtrage, il distingue le soi et le non soi ce qui évite que le système immunitaire ne s'attaque à l'organisme et induise des pathologies très graves dites auto-immunes.
La compréhension des mécanismes de fonctionnement du système immunitaire passe tout d'abord par l'étude de ses différents acteurs cellulaires et moléculaires, et notamment les anticorps, les lymphocytes B, et T, les molécules du CMH et les macrophages.
L'histoire de l'immunologie commence en 430 av. J.-C. Thucydide, qui relate un épisode de peste à Athènes, écrit avec beaucoup d'intuition : « On se montrait plus compatissant avec les malades, une fois que l'on avait soi même réussi à surmonter l'épreuve, car tout en sachant par expérience ce qu'il en était, on se sentait à l'abri du danger. En effet le mal ne frappait pas deux fois un même homme ou du moins la rechute n'était pas mortelle. » Il décrit ainsi le principe de la vaccination : une fois que l'on a été infecté par l'agent pathogène, si l'on n'en meurt pas, on est protégé d'une nouvelle rencontre avec celui-ci. Il faudra attendre 2 000 ans pour que Edward Jenner, en 1796, un médecin anglais applique cette leçon de la peste au cas de la variole, dont les gens meurent à cette époque. Partant de l'observation que les bovins peuvent eux aussi attraper la variole, il prend un peu de germe de la variole bovine non infectieuse pour l'homme qu'il inocule à des patients, les protégeant ainsi de la variole humaine. L'acceptation de cette découverte par les médecins, à travers le monde, prendra encore 50 à 60 ans. Un siècle après, Louis Pasteur montre qu'il n'est pas nécessaire de prendre l'agent pathogène d'une autre souche, mais qu'il suffit de chauffer l'agent qui infecte l'humain, ce qui le rend moins virulent, donc incapable de provoquer la maladie mais apte à provoquer la vaccination. La question se pose alors, à cette époque, de savoir ce qui protège les individus contre les maladies : s'agit-il de cellules ou de molécules contenues dans le sang. Cette controverse oppose Louis Pasteur et Robert Koch.
Emil von Behring montre en 1890 que l'immunité peut être transmise par un sérum du sang ne contenant pas de cellules. Il appelle les molécules responsables de l'immunité des anticorps. En 1920, Karl Landsteiner, qui a découvert les groupes sanguins, montre que l'on peut obtenir des anticorps contre n'importe quelle substance. Le système immunitaire peut donc réagir contre tout ce qui lui est présenté. Cela pose le problème de savoir comment fait le système immunitaire pour ne pas reconnaître le soi.
L'ensemble de ces découvertes aboutit à l'oubli total de la théorie cellulaire, et ceci pendant 50 ans à partir de 1900, sans que soit pour autant résolue la question de savoir comment sont produits les anticorps. A partir de la deuxième moitié du 20ème siècle, on redécouvre que le sang contient une multitude de cellules, et l'on s'aperçoit qu'elles dérivent d'un type de cellules particulières, les cellules souches hématopoïétiques. Ces dernières donnent naissance à différents types de lignées : la lignée lymphoïde (qui produira les lymphocytes), la lignée myéloïde (qui produira les lignées phagocytaires, c'est à dire les macrophages, les monocytes, les granulocytes basophiles, neutrophiles, et éosinophiles), la lignée erythroide qui produit les globules rouges. Les anticorps sont produits par des lymphocytes particuliers, de type B. Les lymphocytes de type T produisent, eux, un autre type de molécules de reconnaissance.
Comme souvent dans les polémiques scientifiques les deux théories contribuent à la réalité : des cellules et des molécules sont responsables de l'immunité.
Pour bien comprendre le mode d'action des anticorps, il faut raisonner en terme de reconnaissance. Il faut s'imaginer l'anticorps comme une pince (par exemple anti a) qui s'adapterait parfaitement à l'objet a, qui le reconnaîtrait : la pince anti a est spécifique de l'objet a. En revanche, cette pince anti a reconnaîtrait moins bien un objet b. Tout le système immunitaire va être basé sur ce principe. L'amélioration du système immunitaire, grâce à la vaccination, provient ainsi de l'amélioration de la reconnaissance d'une pince anti x spécifique du bacille du tétanos par exemple, ce qui permettra à cette pince de se débarrasser plus facilement de l'agent pathogène, lors d'une nouvelle rencontre. L'amélioration de cette pince va se faire dans les organes lymphoïdes, rate et ganglions, en une à deux semaines, par hypermutation spécifique des gènes codant cet anticorps (voir plus bas), et c'est cette cellule lymphoïde fabriquant cette pince améliorée qui va rester dans l'organisme dix ou vingt ans. Mémoire et amélioration de la réponse sont donc intimement liées.
Il faut donc un lymphocyte B pour fabriquer un anticorps donné (une pince). Le lymphocyte B porte à sa surface un anticorps que l'on appelle un récepteur et c'est cet anticorps qu'il fabrique. Cette cellule x peut ainsi attraper l'élément X. Il en va de même pour une cellule y avec un élément Y. Le système immunitaire produit ainsi des millions de cellules qui peuvent reconnaître des millions de corps différents. Ainsi, chaque fois qu'un virus, une bactérie ou une cellule greffée est introduite dans l'organisme, il existe un lymphocyte B possédant un récepteur spécifique pour chacun de ces éléments.
C'est dans la moelle osseuse que sont produites, chaque jour, ces cellules, et aucune des cellules produites ne va pouvoir s'attaquer à l'organisme, donc porter de récepteur qui reconnaît le soi. Cela est dû au fait qu'au cours de cette production, dans la moelle osseuse, une cellule qui reconnaît le soi va être éliminée. C'est ce que l'on appelle la sélection négative, qui permet au système immunitaire de reconnaître tout l'extérieur sans attaquer l'intérieur.
Cinq milliards de lymphocytes B sont produits chaque jour dont 95 % vont mourir dans les 48 heures. Il y en a 400 milliards dans le corps, et nous portons en tout approximativement 10 millions de spécificités différentes d'anticorps.
La question de la génération de la diversité (Generation Of Diversity) a interpellé les immunologistes dans les années 70. Il est maintenant connu que le génome ne contient pas plus de 30 000 gènes. Il est donc exclu que chaque anticorps soit codé par un gène différent. Linus Pauling a suggéré que le nombre d'anticorps différents soit en réalité assez restreint, mais que la pince soit assez plastique pour s'adapter à chaque molécule différente qu'elle rencontre. Cette théorie de l'induction s'est cependant avérée fausse.
La compréhension de ce phénomène de GOD s'effectuera grâce à la biologie moléculaire.
En 1954, à Cambridge, Jim Watson et Francis Crick font une des plus belles découvertes du siècle en biologie, et démontrent que le support de l'hérédité est l'ADN, une molécule organisée en une double hélice, qu'utilisent toutes les espèces vivantes. Les longs brins d'ADN sont présents dans chacune de nos cellules, sous la forme repliée et compactée de nos 23 paires de chromosomes. S'ils étaient débobinés et mis bout à bout, ils atteindraient une longueur de 1m40 par cellule. Les brins d'ADN sont composés de la succession de quatre lettres : A, T, G, C que l'on appelle des bases. Le génome humain en compte deux milliards. L'assemblage linéaire de ces bases n'est pas neutre : il s'organise en unités de transcription, des gènes, qui ont un début et une fin, qui codent pour des protéines. Il y a environ 30 000 gènes. Chaque cellule possède le patrimoine génétique complet mais n'exprime qu'un certain nombre de gènes, qui sont différents selon que la cellule est une cellule de rétine ou de peau par exemple. Les autres sont silencieux. Si le gène est exprimé, l'ADN est transcrit en ARN dans le noyau, puis est traduit, dans le cytoplasme, en une protéine, composée d'acides aminés, l'anticorps par exemple, le lymphocyte B 1 exprime l'anticorps 1.
Pour expliquer toutes les spécificités d'anticorps existantes, Susumu Tonegawa démontre qu'il n'existe pas dix millions de gènes, mais que c'est une combinaison qui permet d'aboutir à ce chiffre. Il propose quatre groupes (V, D, J et C) comportant en totalité une centaine d'éléments. Chaque lymphocyte, produit dans la moelle osseuse, va prendre un élément de chaque groupe de manière aléatoire, et ainsi présenter une combinaison unique (par exemple V69D5J4C2) qui va coder pour un récepteur unique. En outre, le réarrangement, la recombinaison entre chacun des segments, se fait de manière imprécise, ce qui aboutit à une diversité supplémentaire. Au moment de l'émigration de la moelle osseuse, il est vérifié pour chaque cellule que la combinaison n'aboutit pas à la production d'un récepteur reconnaissant le soi.
Au moment où l'agent pathogène entre dans l'organisme, il rencontre le lymphocyte B qui a le récepteur spécifique complémentaire de l'antigène à sa surface. Le lymphocyte B va alors sécréter des milliers d'anticorps, identiques au récepteur présent à sa surface, qui vont se lier à l'agent pathogène et l'éliminer. La réponse immédiate du système immunitaire est donc de faire des milliers d'anticorps contre un agent pathogène afin de se fixer à lui et s'en débarrasser.
Quand une bactérie ou un virus sont présents à l'état complet dans le corps, ce sont les lymphocytes B qui vont reconnaître cet agent pathogène par l'intermédiaire de leur anticorps de surface qui va par la suite être sécrété en grande quantité.
Il existe aussi des infections cellulaires, qui sont très rapides, au cours desquelles un virus entre dans l'organisme et va immédiatement se loger à l'intérieur d'une cellule, où il s'intègre dans le génome. Il se sert de la machinerie de la cellule pour subsister : quand les chromosomes se divisent et se répliquent, le virus, qui y est intégré, se réplique aussi, transformant ainsi la cellule en usine à virus. Si ces agents n'ont pas été attaqués lorsqu'ils étaient dans la circulation, le système immunitaire B ne peut plus les reconnaître maintenant qu'ils sont intracellulaires. C'est notre système immunitaire T qui va être capable de s'attaquer aux cellules infectées pour les tuer, et ceci en préservant les cellules saines.
En 1974, Peter Doherty et Rolf Zinkernagel sont à l'origine du concept du soi modifié, qui introduit deux nouveaux acteurs de la réponse immunitaire : le lymphocyte T et le CMH (le Complexe Majeur d'Histocompatibilité, HLA chez l'homme pour Human Leucocyte Antigen), qui représente la carte d'identité biologique d'un individu. Le complexe HLA est formé de trois gènes, A, B et C, présentant chacun 99 types (on parle d'haplotypes). Un individu est par exemple A28B96C3. Ces trois protéines, qui représentent l'équivalent du numéro de sécurité sociale d'un individu, sont présentes à la surface de toutes les cellules de son organisme. Leur rôle premier est de présenter, comme dans une vitrine, un échantillon des protéines présentes dans la cellule, sous forme de fragments peptidiques, que la cellule produit constamment. La plupart du temps, il s'agit de protéines du soi. Si la cellule est infectée par un virus, elle présente aussi des morceaux de virus. C'est cela que reconnaît le lymphocyte T : le soi modifié, le peptide viral présenté dans le contexte du HLA. Le lymphocyte T, qui se différencie dans le thymus, présente lui aussi une pince à sa surface qui reconnaît le HLA, le récepteur T, mais ce dernier n'est jamais sécrété. La cellule T scrute constamment le HLA des cellules qu'elle rencontre. Si elle rencontre une cellule infectée, son récepteur T reconnaît le soi modifié, et le lymphocyte T la tue ; si la cellule rencontrée est saine, il y juste reconnaissance du soi et rien ne se passe. Comme pour le lymphocyte B et l'anticorps présent à sa surface, chaque lymphocyte T porte un récepteur T spécifique à sa surface, soumis aux mêmes règles quant à la génération de la diversité, des groupes de plusieurs centaines de gènes se recombinant de manière aléatoire pour le générer.
En revanche, la sélection des cellules T se fait de manière un peu différente. Alors que la cellule B n'est éliminée que si elle reconnaît, avec une forte affinité, une molécule du soi pendant le développement, la cellule T passe par une étape de sélection supplémentaire. En effet, le lymphocyte T doit reconnaître du soi modifié, c'est à dire un peptide, mais dans le contexte du HLA, alors que le lymphocyte B reconnaît un corps étranger à l'état isolé. Dans le thymus, la cellule T est éliminée si elle reconnaît du HLA qui présente du soi de façon forte : c'est la sélection négative, mais, à la différence de la cellule B, il faut aussi qu'elle reconnaisse un peptide du soi, associé au HLA de façon faible, pour se maintenir dans l'organisme : c'est la sélection positive.
Le dernier partenaire de la réponse immunitaire est le macrophage, une cellule phagocytaire qui lorsqu'elle rencontre une bactérie ou un virus l'intercepte, l'ingère et le dégrade. Le travail d'Elie Metchnikov, en 1900, a beaucoup apporté à la connaissance des macrophages. Il a mis le doigt sur un des acteurs centraux de la réponse immunitaire en remarquant qu'il existait chez l'étoile des mers des cellules capables de se présenter immédiatement au point d'entrée d'un corps étranger, pour l'ingurgiter et le phagocyter. Les rôles du macrophage sont multiples. Non seulement, il phagocyte des micro-organismes infectieux, mais il alerte le système immunitaire, grâce à la sécrétion d'interleukines qui sont des messagers moléculaires, et grâce à la présentation aux lymphocytes des molécules du pathogène.
Lorsqu'un agent pathogène (comme le bacille du tétanos par exemple) pénètre dans l'organisme, il provoque une réponse immédiate (primaire). La première ligne de défense, le macrophage (la réponse innée) reconnaît le virus ou la bactérie, le phagocyte, le fragmente pour le présenter à sa surface avec le HLA et ainsi activer la cellule T, qui est alors en mesure de tuer les cellules infectées qu'elle rencontre en patrouillant dans l'organisme. Dans le même temps, le lymphocyte B approprié reconnaît le bacille du tétanos entier et sécrète les anticorps. Tout est question de rapidité : si l'infection est plus rapide que le système immunitaire, si l'agent pathogène n'est pas tué immédiatement, il peut se propager très vite et provoquer la mort de l'organisme.
Cette réponse primaire a lieu en quelques jours. Si l'infection est endiguée, il faut en garder la mémoire, pendant parfois plus de vingt ans. L'organisation de la mémoire passe par une cellule particulière, le lymphocyte T CD4, à laquelle les macrophages ont aussi présentés l'antigène. Cela va permettre de produire deux types de cellules CD4, l'une chargée d'induire la génération des cellules B à mémoire et la maturation de l'affinité des anticorps, et l'autre d'induire la maturation de la réponse des lymphoctes T. Cette cellule est donc au cSur de la stratégie de défense immunitaire de l'organisme. C'est elle que va reconnaître et détruire le virus du SIDA. C'est pour cette raison que le taux de cellules T CD4 positives dans l'organisme représente un marqueur important de l'évolution de la maladie.
Au niveau spatial, le sang contient donc toutes les cellules concernées par la réponse immune. Lorsqu'un agent infectieux traverse la barrière de la peau suite à une coupure par exemple, les macrophages qui sont présents sur les lieux, le reconnaissent, le phagocytent, et enclenchent une réaction inflammatoire, en sécrétant des cytokines et en recrutant d'autres acteurs, des éosinophiles, rendant les vaisseaux voisins plus perméables, ce qui permet aux cellules présentes dans le sang de rentrer dans le périmètre infecté. Le macrophage chargé d'agents infectieux atteint les organes lymphoïdes, comme la rate et les ganglions, par la circulation lymphatique, et c'est là qu'il active les lymphocytes T et B naïfs spécifiques de l'agent pathogène. Les lymphocytes une fois activés vont revenir sur les lieux de l'infection pour maîtriser celle-ci.
Le système immunitaire ne fonctionne cependant pas toujours aussi bien qu'il le devrait et peut être néfaste pour l'organisme au lieu de le protéger. Charles Richet en a ainsi fait l'expérience en 1902, lorsqu'il a découvert le phénomène d'allergie. Il a piqué son chien une première fois avec une anémone de mer, ce qui n'a pas eu d'effet. Mais, lorsqu'il a recommencé l'opération, le chien en est mort. Au lieu d'avoir provoqué une réaction de vaccination, la piqûre avait provoqué une réaction allergique. Le système immunitaire quand il est déréglé peut ainsi être redoutable, et anéantir un organe, voire un individu. Une maladie auto-immune peut ainsi être déclenchée si l'infection va plus vite que le système immunitaire. La cellule T, activée par un macrophage qui a reconnu l'agent infectieux, tue toutes les cellules infectées, mais, dans le cas, par exemple, où le virus a été plus rapide et a réussi à infecter un organe, ces cellules T vont pouvoir attaquer celui-ci et le détruire. Il peut aussi arriver qu'un antigène bactérien soit identique à un antigène du soi, ce qui peut induire une réaction d'auto-immunité par mimétisme moléculaire : le système immunitaire attaque le soi car il croit combattre l'étranger. Il existe aussi des parties du corps que le système immunitaire ne voit jamais, et donc des antigènes auxquels les lymphocytes n'ont jamais été confrontés (les antigènes séquestrés). Si, à la suite d'un traumatisme ou d'une infection, le système immunitaire entre en contact avec ces antigènes qu'il n'a jamais vu (de l'Sil par ex.) il peut penser qu'il a à faire à du non soi.
En conclusion, il reste de grandes questions à résoudre pour comprendre le fonctionnement du système immunitaire et, notamment, celle de l'amélioration de la réponse. Ce phénomène est connu depuis 50 ans et on commence seulement à comprendre son mécanisme moléculaire. Nous venons de montrer, avec Claude-Agnès Reynaud, que des polymérases spécifiques, dites « error prone », chargées de franchir des lésions lors de la réplication semi-conservative mais, faisant des fautes lorsqu'elles copient l'ADN normal, seraient responsables du processus d'hypermutation permettant cette amélioration.
Par ailleurs, comment expliquer le phénomène, assez étonnant, de la mémoire immunitaire qui permet à une cellule de rester des décennies dans l'organisme, tout en gardant la mémoire de sa première rencontre avec l'antigène ?

 

VIDEO          CANAL U           LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

COEUR ARTIFICIEL...

 

Transcription de la 521e conférence de l'Université de tous les savoirs donnée le 18 janvier 2004
Alain Carpentier « Xéno-transplantation ou cSur artificiel, un défi pour demain »
L'insuffisance cardiaque
L'insuffisance cardiaque est une perte de la force de contraction du cSur. Terme ultime des maladies cardio-vasculaires, c'est une affection extrêmement fréquente, en fait la première cause de mortalité chez l'homme avant le cancer. Elle affecte chaque année 600 000 personnes en France et cinq millions de personnes aux Etats-Unis, donc proportionnellement un peu plus aux Etats-Unis qu'en France. Les hommes sont deux fois plus touchés que les femmes, mais du fait de l'évolution des comportements, en matière de tabagisme notamment, l'écart tend à se réduire. Cette maladie est très grave puisque 45 % des malades arrivés au stade de grave insuffisance cardiaque meurent au cours de l'année suivant cette découverte.
Comment se manifeste-t-elle et comment la traiter ? Pour répondre à cette double question, il faut d'abord rappeler ce qu'est le cSur et pour cela faire appel à nos souvenirs de lycée. Le cSur est une pompe qui sert à faire circuler le sang dans tous nos organes. Il comporte deux chambres contractiles, le ventricule droit et le ventricule gauche. Le ventricule droit reçoit le sang veineux, désoxygéné venu de nos organes et le propulse dans les poumons pour qu'il se charge d'oxygène. Le ventricule gauche reçoit le sang oxygéné et le propulse par nos artères vers les organes qui y puisent les nutriments dont ils ont besoin. L'insuffisance cardiaque apparaît lorsque la force de contractilité de l'un ou l'autre des ventricules diminue. Lorsque le ventricule gauche est en cause, le malade s'essouffle à l'effort puis de manière permanente. Si c'est le ventricule droit qui est atteint, un gonflement des jambes et des douleurs dans la région du foie apparaissent. Le plus souvent, les deux ventricules sont impliqués dans l'insuffisance cardiaque et les signes s'additionnent. La moins bonne contraction des ventricules induit un ralentissement de la circulation. Les organes sont donc moins bien nourris. Un cercle vicieux s'installe dans lequel l'état d'un organe retentit sur les autres jusqu'à l'issue fatale. Ainsi, l'insuffisance cardiaque n'est pas seulement une souffrance du cSur, c'est une souffrance de tous les organes. Le moyen d'y pallier est de rendre au cSur sa force contractile.
La médecine a fait, ces cinquante dernières années, des progrès considérables. Auparavant, les seuls remèdes étaient la caféine, l'extrait de digitale et la saignée. Souvenons nous des médecines de Molière : la purge et la saignée résumaient tout leur art. Les saignées soulageaient effectivement le cSur parce qu'il avait ainsi moins de sang à pomper, mais elles rendaient les gens anémiques, ce qui était bien pire. Aujourd'hui, comme pour beaucoup d'autres maladies, le traitement de l'insuffisance cardiaque est une plurithérapie, c'est à dire qu'il recourt à plusieurs médicaments, chacun agissant sur l'une des composantes de la maladie : les vasodilatateurs dilatent les vaisseaux et ainsi diminuent les résistances qui s'opposent au travail du cSur, les tonicardiaques renforcent la contractilité des ventricules, les bêtabloquants ralentissent le cSur, rendant sa contraction plus efficace.
Au cours du temps, progressivement, ces traitements perdent leur efficacité. Il faut alors se tourner vers la chirurgie. Elle offre plusieurs solutions. Certaines ne sont que palliatives : ce sont les appareils d'assistance dont, faute de place, on ne parlera pas dans cet exposé. D'autres sont radicales et comportent purement et simplement le remplacement du cSur par le cSur d'un autre homme, ou par un cSur artificiel.
Transplantation cardiaque
La transplantation cardiaque est le remplacement du cSur malade par un cSur pris sur un autre être humain. Il s'agit d'une opération chirurgicale spectaculaire et fort émouvante.
En 1967, beaucoup d'équipes de recherche travaillaient sur ce sujet lorsque, venue d'Afrique du Sud, la nouvelle arriva que Christian Barnard avait procédé à la toute première transplantation d'un cSur chez l'homme. La nouvelle fit l'effet d'une bombe - à la fois médiatique et médicale car elle représentait un nouvel espoir pour de nombreux malades. Beaucoup d'équipes tentèrent alors l'aventure avec trop de hâte et peu de succès. A l'hôpital Broussais où je travaillais à l'époque, nous étions prêts depuis longtemps ayant réalisé de nombreuses transplantations sur le chien sous la direction du professeur Jean-Paul Cachera. En avril 1968, un père dominicain, le père Damien Boulogne, arrivé au stade terminal d'une insuffisance cardiaque, vint voir notre chef de service, le professeur Charles Dubost et lui proposa d'être son premier opéré. Celui-ci accepta et réalisa, avec l'aide du professeur Cachera et de moi-même, la première transplantation cardiaque réalisée avec succès en Europe.
Une transplantation cardiaque présente aujourd'hui encore de grandes difficultés.
La première concerne le prélèvement du cSur sur le donneur d'organe. On ne peut faire ce prélèvement que sur un homme décédé, mais ceci le plus tôt possible pour que le cSur fonctionne encore. L'espace de temps dont on dispose est très court et très souvent à l'époque le cSur se révélait inutilisable. C'est alors qu'on réalisa que la mort n'est pas tant l'arrêt du cSur que l'arrêt de toutes les fonctions du cerveau. Cette nouvelle définition de la mort était capitale car elle permettait de prélever des organes encore sains chez un sujet dont le cerveau ne fonctionnait plus. Ainsi aujourd'hui le prélèvement d'un organe ne pose plus les graves problèmes éthiques qu'il soulevait autrefois. D'après les textes officiels, toute personne majeure dont le cerveau est mort est déclarée légalement décédée et devient un donneur d'organes potentiel, à moins qu'elle n'en ait manifesté le refus de son vivant. Dans la pratique, c'est la famille qui est sollicitée pour donner son accord. Pour des raisons éthiques, elle ne l'est jamais par le chirurgien transplanteur, mais par un médecin spécialisé. Une fois qu'un organe est disponible, que l'équipe de prélèvement a vérifié son bon fonctionnement, il faut choisir le receveur parmi les malades figurant sur la liste d'attente. Un choix douloureux car il y a toujours trop de malades en attente pour le petit nombre de cSurs disponibles. Le choix se porte sur le malade le plus urgent ou sur celui qui attend depuis le plus longtemps et surtout sur celui qui est le plus compatible, c'est à dire qui tolérera le mieux le coeur étranger. De même que les transfusions de sang ne se font qu'entre personnes de groupes sanguins compatibles, la même règle est respectée pour les organes. Théoriquement, il faudrait étudier aussi les groupes de compatibilité des tissus découverts par le grand scientifique français Jean Dausset. Mais le temps que nécessitent ces tests ne permet pas d'en tenir compte pour la sélection des malades.
La deuxième difficulté est l'opération elle-même. Dès que le receveur a été identifié sur la liste, il est immédiatement convoqué. C'est le temps zéro de l'opération. A partir de cet instant, une lutte contre la montre est engagée, chaque minute compte, aussi bien du côté du malade qui, pour être opéré, doit arriver d'urgence à l'hôpital, que du côté du donneur qui doit être prélevé dans les meilleurs délais. Une équipe de prélèvement est envoyée à l'hôpital où le donneur a été accueilli. Avant de prélever les organes, elle procède à leur protection par des liquides physiologiques réfrigérés. Le transfert du cSur doit être effectué en moins de trois ou quatre heures par avion ou par ambulance. Pendant ce temps, le malade à opérer est arrivé à l'hôpital et les derniers contrôles biologiques sont pratiqués. La transplantation peut alors avoir lieu. Le chirurgien ouvre largement le thorax et branche un cSur-poumon artificiel sur la circulation pour suppléer la fonction des poumons et du coeur pendant qu'il procèdera à l'ablation du cSur malade et à son remplacement par un cSur sain. C'est une émotion toujours vive de voir le thorax soudain vidé de son organe vital retrouver un cSur tout neuf. Celui-ci est suturé aux vaisseaux du malade. Les vaisseaux sont déclampés. Le cSur ne se remet à battre qu'après une ou deux minutes. Parfois les battements se font attendre plus longtemps, suscitant un nouveau moment d'intense émotion. Il est alors possible d'arrêter le cSur-poumon artificiel.
Un autre défi commence alors, la lutte contre le " rejet ". Qu'est-ce donc que ce rejet dont on parle tant ? Notre corps est défendu contre les agents pathogènes qui nous entourent, virus, microbes ou autres, par un système de défense très élaboré appelé " système immunitaire ". C'est grâce à lui que nous luttons, victorieusement le plus souvent, contre les infections. Le problème est qu'il ne fait pas la différence entre un microbe qui menace la vie et un cSur qui a été transplanté pour la sauver. Dès que le système immunitaire reconnaît un intrus, il mobilise ses armes - des cellules sanguines appelées lymphocytes - pour le détruire. Dans le cas d'une transplantation d'organe, c'est ce que l'on appelle le rejet immunologique. Pour s'opposer à ce rejet, un seul moyen : neutraliser l'action des lymphocytes les plus agressifs par des médicaments. Des boucliers en quelque sorte. Ils s'appellent stéroïdes, azathioprine et ciclosporine. A l'époque de la transplantation du père Boulogne, ce dernier médicament, le plus efficace, n'était pas disponible et les résultats des transplantations n'étaient pas aussi bons qu'aujourd'hui. Mais l'histoire de la découverte de cette ciclosporine vaut une parenthèse car elle est représentative de la manière dont le progrès se fait en sciences.
Les entreprises pharmaceutiques sont sans arrêt à la recherche de nouveaux antibiotiques pour lutter contre les nouvelles infections. Ces antibiotiques, de même que leur ancêtre la pénicilline, sont le plus souvent des champignons ramassés au hasard de collectes systématiquement organisées par ces entreprises dans les forêts, les champs, les ruisseaux et même les dépôts de détritus. L'un de ces limiers, ramasseurs de champignons, s'appele Jean-François Borel. Il est chercheur des laboratoires Sandoz à Bâle. Un jour, il rapporte des forêts de Norvège toute une collection de prélèvements hétéroclites. L'un d'eux contient un champignon qui, bien qu'inefficace contre les bactéries, est en revanche capable de tuer les lymphocytes impliqués dans le rejet immunologique. Tout excité par cette découverte, il en parle à son directeur qui, déçu devant l'inefficacité du champignon contre les bactéries, lui demande d'abandonner ses recherches. Jean-François Borel persiste au contraire de façon semi-clandestine et c'est grâce à son acharnement que nous disposons aujourd'hui d'un médicament merveilleux, la ciclosporine, si efficace dans les transplantations d'organe. C'est ainsi que procède souvent la recherche : une expérience ne donne pas le résultat escompté, la plupart des gens abandonne. Le véritable chercheur au contraire persiste et trouve l'inattendu. C'est le cas de Pasteur, de Fleming et de bien d'autres.
Le principal obstacle à la transplantation du cSur n'est pas tant les difficultés que l'on vient de voir que le manque crucial de donneurs et cela est vrai aussi pour les autres organes, rein, foie, pancréas. En France, un malade sur trois meurt faute de recevoir l'organe dont il aurait besoin. Autre obstacle de taille : il est psychologiquement très pénible pour un malade de fonder ses espoirs de guérison sur la mort de quelqu'un. Le recours à un cSur prélevé sur un animal (ou xénotransplantation) peut seul résoudre ces problèmes. Le porc en la matière est le plus proche par sa taille mais là deux difficultés surgissent. Les réactions immunologiques entre l'animal et l'homme sont précoces, hyperaiguës, foudroyantes. Il faut donc trouver des moyens plus efficaces encore pour les combattre. Seconde difficulté, le risque de transmission de maladies animales à l'homme, ce qu'on appelle les zoonoses. C'est ce risque qui a imposé un moratoire à l'équipe de Cambridge en Angleterre qui était prête à faire les premières xénotransplantations chez l'homme il y a quatre ans.
Les recherches continuent néanmoins pour relever ce double défi. En attendant, d'autres chercheurs travaillent sur le second type de remplacement du cSur, le cSur artificiel.
Le cSur artificiel
Le manque d'organes de transplantation et les difficultés que posent les xénogreffes justifient pleinement les recherches qui visent à réaliser un cSur artificiel. Il s'agit ici du vrai cSur artificiel, le cSur artificiel complet et totalement implantable destiné, comme la greffe cardiaque, à remplacer le cSur du malade. Et non pas ces appareils d'assistances ventriculaires, improprement appelés parfois cSurs artificiels, qui sont utilisés seulement comme assistance d'un cSur malade laissé en place en attendant une greffe cardiaque disponible.
Comme le cSur naturel, un cSur artificiel comporte deux ventricules droit et gauche. Chaque ventricule est cloisonné par une membrane pulsatile en deux chambres. L'une contient le sang, l'autre un liquide alternativement injecté et aspiré par une moto-pompe qui lui est accolée. Ce mouvement de va-et-vient du liquide mobilise la membrane qui tour à tour aspire le sang veineux puis le refoule dans les artères tout comme un ventricule normal.
Si le concept est relativement simple, sa réalisation pose des problèmes considérables. Le premier est la miniaturisation. Le cSur artificiel étant destiné à remplacer le cSur malade, il doit avoir une taille à peu près semblable à celui-ci. Une gageure car il s'agit de concentrer dans un même volume réduit les deux ventricules, les groupes moto-pompes et l'électronique de commande. Pour réussir, il faut faire de nombreuses études par ordinateur des espaces anatomiques disponibles et de nombreuses maquettes de forme exactement adaptée.
Le second problème est la régulation médicale, c'est à dire le pilotage informatique des moteurs et des pompes pour adapter à tout moment la fonction du cSur aux besoins de l'organisme, quelles que soient les conditions, repos, effort, position couchée ou debout. On dispose pour cela de capteurs et d'un système de recueil en continu des données physiologiques: pressions et volumes enregistrées à l'intérieur de chaque ventricule.
L'énergie animant les moteurs est dispensée par des batteries. L'une intra-corporelle permet une autonomie de quelque 15 minutes - le temps de prendre une douche - les autres, plus volumineuses, extra-corporelles, sont connectées à la batterie intra-corporelle et la rechargent en permanence le reste du temps.
Dernier problème et non le moindre, le cSur artificiel doit être hémocompatible, c'est à dire qu'il ne doit pas donner lieu à la formation de caillots sanguins, complication la plus fréquente de tous les appareils médicaux destinés à être en contact avec le sang. Heureusement, il existe des matériaux spéciaux, notamment des matériaux dits " bioprothétiques " développés en France il y a plusieurs années qui remplissent ce rôle.
La mise au point d'un cSur artificiel nécessite un grand nombre d'études et d'essais. Le mode d'expérimentation a beaucoup changé au cours de ces quinze ou vingt dernières années. Jusqu'alors les expérimentations étaient effectuées sur l'animal, le veau généralement. C'est de moins en moins le cas. La relève est prise par des tests sur bancs hémodynamiques et des simulations sur ordinateur. L'ère de l'informatique permet maintenant de simuler des cSurs artificiels et leur comportement dans un réseau artificiel. Des bancs hémodynamiques sophistiqués permettent de construire des réseaux reproduisant toutes les caractéristiques du système vasculaire, un homme artificiel en quelque sorte ! Grâce aux ordinateurs, on peut prévoir les performances d'un cSur artificiel avec plus de précision et à un moindre coût que les expériences sur animaux. On peut même se placer dans des conditions extrêmes telles que le froid, le chaud ou des maladies diverses.
Pour conclure sur une note d'optimisme, soulignons que le progrès le plus remarquable de la cardiologie moderne n'est pas la mise au point d'appareillages complexes aussi utiles soient-ils mais la connaissance des facteurs de risques qui président au développement des maladies du cSur. Il est possible aujourd'hui de dire avec certitude que tel facteur héréditaire, tel comportement, tel mode de vie encourent un risque accru de telle ou telle maladie. Pour la première fois, l'homme peut peser sur son propre destin en déjouant ces risques, par exemple en évitant le tabac, la sédentarité, le surpoids. De son côté, le médecin surveillera et corrigera une tension artérielle trop haute, un diabète débutant, une tendance à l'obésité. De cette alliance entre le médecin et le patient naît la médecine dite préventive, celle qui évite le recours aux solutions ultimes et salvatrices que sont greffes cardiaques et cSurs artificiels.

 

VIDEO          CANAL  U            LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

LA VIE DANS DES CONDITIONS EXTRÊMES

 

Texte de la 433e conférence de l'Université de tous les savoirs donnée le 14 juillet 2002
Purificacion Lopez Garcia : " La vie dans les milieux extrêmes "

L'objet de cette conférence est la vie dans des conditions extrêmes, dans des environnements où on pensait que la vie était impossible. Il y a trente ans à peine, on pensait que certains environnements étaient stériles, dépourvus de vie, comme les zones volcaniques, terrestres ou sous-marines, les grandes fosses océaniques, et même la glace des régions polaires.

Une introduction présentera les microorganismes qui sont quasi exclusivement les êtres vivants rencontrés dans ces environnements. Ces microorganismes sont appelés "extrêmophiles" - qui aiment les conditions extrêmes-. Cette introduction décrira comment on les a découverts, et comment on les étudie.
- Dans une seconde partie, je vous décrirai les différents environnements extrêmes, où se rencontrent ces organismes
- Enfin, j'aborderai le rapport entre les organismes extrêmophiles et l'exobiologie (ou astrobiologie pour les Américains). L'exobiologie est la science qui étudie les origines de la vie et la distribution de la vie, non seulement sur Terre mais dans l'univers.

I. Introduction : les organismes extrêmophiles :A. La découverte des organismes extrêmophiles
Les premiers organismes extrêmophiles isolés font partie des organismes halophiles, découverts dans un environnement qu'on croyait dépourvu de vie, d'où son nom : la mer morte. Ces organismes vivent dans des concentrations de sels très élevées (du grec halos, sel) Les chercheurs ne se sont pas beaucoup intéressés à ces organismes, jusqu'à la découverte beaucoup plus tardive, dans les années 70, du 3ème domaine du vivant, celui les Archae, auxquels ils appartiennent.

A cette même époque, en 1969, le microbiologiste Thomas Brock isole pour la première fois une bactérie thermophile, Thermus aquaticus, à partir des sources d'eau chaude du Parc national de Yellowstone aux Etats- Unis. Un peu plus tard, il isole, à partir de cette même source, un organisme encore plus thermophile, Sulfolobus acidocaldarius, qui peut supporter des températures de 90°C, et, de plus, associées à de pH très acides, entre 1 et 5.



La découverte des organismes thermophiles a brisé une idée très répandue depuis l'époque de Pasteur chez les biologistes (et les microbiologistes en particulier), selon laquelle les organismes meurent tous au-delà de 80°C. Or, on était cette fois en présence d'organismes vivants bien au-dessus de cette limite supposée.

La découverte des ces organismes dans des environnements particuliers a dès lors déclenché une sorte de chasse aux extrêmophiles. Après quelques années, cette chasse a abouti à la découverte d'une diversité inouïe, complètement inattendue, dans des milieux supposés hostiles à la vie.
B. Définition
Avant de poursuivre dans la description des ces organismes, je voudrais vous en donner une définition plus objective. Un organisme extrêmophile est un organisme qui vit aux limites de la vie, c'est-à-dire aux limites, pour un paramètre physico-chimique donné, au-delà desquelles la vie ne peut exister.
Si on prend l'exemple de la température, il existe des organismes qui se développent à des températures très négatives, de presque - 20°C, et d'autres à des températures de 110-115 °C.
Dans cette fenêtre de température, on classe différents organismes dans leur propre fourchette de température, celle où ils peuvent se développer. Des températures les plus basses aux plus élevées, on rencontre des organismes dits psychrophiles, puis mésophiles, thermophiles modérés, thermophiles extrêmes et enfin hyperthermophiles. Dans chacune des gammes de températures tolérées, les organismes ont une température optimale de croissance, à laquelle leur taux de croissance est maximal. En deçà et en delà de cette température optimale, leur taux de croissance diminue.
Selon notre définition d'extrêmophile, dans le cas présent, seuls les hyperthermophiles et les psychrophiles sont considérés comme de vrais extrêmophiles, car ils vivent aux limites hors desquelles la vie ne se développe pas. Une propriété intéressante des organismes extrêmophiles est que, non seulement ces organismes tolèrent des valeurs extrêmes d'un paramètre donné, mais, réciproquement, ils dépendent de ces conditions pour vivre. Ainsi, les hyperthermophiles ne peuvent pas se développer en dessous de 60-70 °C.
C. Place des microorganismes extrêmophiles dans l'évolution
La découverte des organismes extrêmophiles a été liée à la découverte des organismes de 3ème domaine du vivant, les Archae (Archaebactéries pour certains). A l'inverse : la découverte des


extrêmophiles a conduit à l'identification de ce groupe, mais également à une "révolution" méthodologique et conceptuelle en microbiologie.
En raison de leur petitesse, les microorganismes sont difficiles à étudier. Chez les organismes plus grands, comme les animaux, il est facile de distinguer les espèces par la morphologie. Grâce à l'évolution de la morphologie suivie sur le registre fossile, il est possible de retracer l'histoire évolutive des animaux et de faire des arbres phylogénétiques (des arbres "généalogiques", qui expriment les relations de parenté). En revanche, la morphologie n'est pas assez informative dans le cas des microorganismes. C'est particulièrement vrai pour les organismes procaryotes, où le matériel génétique n'est pas isolé du reste de la cellule par un noyau membraneux, contrairement aux organismes eucaryotes.
Certes, on reconnaît des formes différentes chez les microorganismes procaryotes - on a des coques, des bacilles, des spiriles... etc. Néanmoins, ces types morphologiques sont en nombre restreint, alors qu'il existe des milliers d'espèces de coques, des milliers d'espèces de bacilles... Les morphologies ne permettent donc pas d'établir de relations de parenté entre les microorganismes.
Les microbiologistes s'étaient donc contentés d'étudier des microorganismes isolés dans des cultures pures, soit par des méthodes d'isolement dans des milieux liquides, soit par étalement sur des boîtes. On pouvait ainsi obtenir des cultures pures (des cultures où toutes les cellules appartiennent à une même espèce). A partir de là, on pouvait ensemencer les microorganismes de ces cultures pures dans de milieux de cultures différents pour étudier leurs propriétés physiologiques. Ainsi, on pouvait classer les microorganismes selon les capacités physiologiques de chacun. On restait cependant incapable d'établir une classification naturelle (ou phylogénie), c'est-à-dire une classification fondée sur des relations de parenté entre organismes.
Une idée révolutionne complètement la phylogénie, en 1965. Il s'agit d'une idée émise par Emile Zuckerkandl et le prix Nobel Linus Pauling, qui proposent dans un article très connu que les macromolécules biologiques accumulent l'histoire évolutive. Ces macromolécules, ce sont par exemple les protéines, l'ADN (le matériel génétique qui code l'information de la cellule) ou encore l'ARN (une sorte d'empreinte de l'ADN). En principe, parmi ces macromolécules, on pourrait en choisir une qui soit présente chez tous les organismes et en obtenir la séquence. En comparant cette séquence chez tous les organismes du monde vivant, on pourrait établir leurs relations de parenté. En effet, la similitude entre les séquences de macromolécules révèle s'ils sont plus ou moins apparentés.
C'est effectivement ce qui a été fait. On a choisi l'ARN ribosomique 16 S 18 S comme carte d'identité moléculaire des organismes. Pourquoi cet ARN ribosomique ? Cette molécule fait partie des ribosomes, qui sont les machines à synthétiser les protéines pour toute cellule. Ils sont indispensables à la vie de n'importe quelle cellule. L'ARN ribosomique, présent dans ces structures, est donc une molécule universelle. En principe, cette molécule peut être utilisée comme marqueur moléculaire des organismes : en comparant sa séquence chez différents organismes, on peut construire des arbres phylogénétiques, c'est-à-dire des arbres où on repère les relations de parenté entre organismes. La longueur des branches de ce type d'arbres indique la distance génétique (c'est-à-dire évolutive) entre ces organismes. Il existe deux représentations de ces arbres : sous forme d'échelle ou sous forme radiale.
En comparant la séquence des ARN ribosomiques de milliers d'espèces, on a ainsi pu construire un arbre universel du vivant, qui regroupe tous les organismes vivants.
Cet arbre a crée une surprise importante. On a découvert que tout un groupe d'organismes dont la morphologie ressemblait beaucoup aux bactéries classiques, se retrouvait isolé, distant à la fois des bactéries classiques (procaryotes) et des eucaryotes, qui rassemblent la plus grande diversité morphologique (plantes, champignons, animaux et microorganismes eucaryotes). Cela remettait en question la traditionnelle représentation des relations entre organismes vivants.
La découverte de cette troisième branche est très importante de deux points de vue. D'une part, du point de vue phylogénétique, pour étudier l'évolution et les origines de la vie. D'autre part, les premiers Archae isolés étaient des extrêmophiles, issus d'environnement à forte température, à forte concentration saline ou encore très acides. On sait que ces Archae sont présentes dans d'autres environnements, presque partout, mais souvent les Archae possèdent le record d'extrêmophiles connus. Quelle signification donner à la propriété de ce domaine ?
D. Les adaptations aux conditions extrêmes
Tout d'abord, les organismes extrêmophiles sont intéressants pour étudier les adaptations moléculaires qu'imposent les différentes contraintes - forte température, acidité...etc. La question est de savoir comment les molécules peuvent résister à des stress extérieurs extraordinaires.
On peut considérer que les cellules sont formées de trois grands types de macromolécules : les membranes (les lipides), les protéines, l'ADN. Des adaptations sont nécessaires à ces trois niveaux pour qu'un organisme supporte des conditions extrêmes.
Les membranes sont essentiellement constituées de lipides. Elles délimitent le contenu cellulaire, maintiennent la cellule en équilibre avec le milieu extérieur, et permettent les échanges avec l'environnement. Les facteurs environnementaux, entre autres la température, affectent la structure de lipides qui sont disposés en bicouche. Les lipides sont constitués d'une petite tête polaire ou hydrophile ("qui aime l'eau") et d'une longue chaîne hydrophobe ("qui n'aime pas l'eau"). Les têtes polaires sont tournées vers l'extérieur (au contact du milieu extra- ou intra- cellulaire aqueux), les chaînes hydrophobes à l'intérieur de la membrane. Les fortes températures augmentent la fluidité

des lipides, ce qui déstabilise les membranes et provoquent des pertes d'ions, avec des conséquences néfastes pour la cellule. Parmi les adaptations rencontrées chez les organismes thermophiles, il y a, par exemple, la formation de mono-couches qui rigidifient la membrane, ce qui contrebalance l'effet délétère des fortes températures. Il existe de la même façon des adaptations des membranes pour chacun des paramètres physico-chimiques de l'environnement.
De la même manière, les protéines peuvent être adaptées aux différents stress auquel fait face l'organisme extrêmophile. Les protéines réalisent différentes fonctions dans la cellule. Or, la fonctionnalité de la protéine est fortement liée à sa forme, à sa configuration. A température élevée, les protéines peuvent développer le plus d'interactions possibles, à l'intérieur de la protéine, mais aussi avec d'autres molécules, pour maintenir leur configuration et leur stabilité. Au contraire, à basse température, les protéines sont adaptées pour augmenter leur flexibilité, par un ensemble d'ajustements.
Enfin, les acides nucléiques doivent également être protégés des agressions induites par les paramètres physico-chimiques extrêmes. En général, les organismes extrêmophiles, en particulier les hyperthermophiles, ou les organismes soumis à de fortes radiations UV, possèdent des systèmes de réparation de l'ADN très puissants.
Quel est l'intérêt de ces organismes ?
En raison de ces adaptations moléculaires très performantes, les organismes extrêmophiles sont très intéressants d'un point de vue biotechnologique, en particulier à cause de leurs systèmes enzymatiques. Les enzymes sont des protéines qui catalysent des réactions chimiques dans la cellule. Chez les organismes extrêmophiles, on les appelle extrêmozymes.
De façon logique, les enzymes sont adaptées aux conditions optimales de croissance de l'organisme dont elles font partie. Dans le cas des extrêmophiles, ces systèmes enzymatiques sont donc capables de fonctionner dans des conditions extrêmes. Cette résistance à des conditions drastiques peut présenter des intérêts pour des processus industriels particuliers - dont on verra quelques exemples.
D'un point de vue scientifique, la découverte des extrêmophiles, liée à celle des Archae, a représenté un réel bouleversement dans le domaine de l'évolution. De plus, cette découverte a permis de formuler de nouvelles hypothèses sur l'origine de la vie et, au final, du point de vue de l'exobiologie, pour de nouvelles recherches sur l'existence de formes de vie hors de la Terre.
II. Les organismes extrêmophiles et leur environnement
Les environnements extrêmes présentent deux caractéristiques importantes. D'une part, la prédominance de la vie microbienne. Dans les milieux les plus extrêmes, les plus limitants

pour la vie, seuls certains microorganismes sont capables de se développer. D'autre part, dans ces environnements, la diversité diminue : au fur et à mesure qu'on s'approche des conditions limites pour la vie, on rencontre de moins en moins d'espèces.
On classe les organismes extrêmophiles selon le paramètre physico-chimique auquel ils sont adaptés dans une valeur extrême. Par exemple, pour la température, on a des organismes hyperthermophiles et psychrophiles. Pour le pH, on a des organismes qui vivent à pH bas, les alcaliphiles, ou élevé, les acidophiles. On va maintenant parcourir brièvement les environnements où vivent ces différents organismes.
Les températures extrêmes
Les hyperthermophiles sont probablement les plus populaires des extrêmophiles. Leur température optimale de croissance est supérieure à 80°C.
C'est à température élevée que la propriété selon laquelle la diversité diminue près des conditions limitantes est la mieux avérée. Ainsi, à basses températures, on rencontre toute une diversité d'organismes qui peuvent se développer et qui appartiennent aux trois domaines du vivant (archae, eucaryotes, bactéries). En revanche, les eucaryotes n'arrivent pas à vivre au-delà de 60°C. Seuls quelques champignons et quelques eucaryotes unicellulaires supportent 60°C. Au-dessus de cette température, on trouve seulement des archae et des bactéries thermophiles et hyperthermophiles. Aucune bactérie ne se développe à plus de 95 °C. Au-dessus de cette température, c'est le territoire des Archae. Seules des Archae sont capables de vivre au-delà de 100°C, jusqu'à 110-115°C.
Les environnements où se développent les thermophiles sont liés au volcanisme. Les sources chaudes du Parc National de Yellowstone aux Etats-Unis sont le premier type d'environnement où on les a isolés. On les rencontre également au niveau des solfatares de plusieurs régions volcaniques : Islande, Nouvelle Zélande, Australie, Italie etc. Un autre type d'environnement correspond aux sources hydrothermales continentales, notamment en Islande, en Italie et en Grèce. Cependant, la plupart de ces sources restent marines, en relation avec les grandes fosses dorsales océaniques. On les rencontre à de très grandes profondeurs, entre - 1500 et - 3000 mètres. Elles ont notamment été étudiées au niveau des rift médio atlantique et de l'est pacifique. On en trouve également au niveau de l'Océan Indien.
Ces sources sous-marines ont été découvertes pour la première fois en 1977 grâce à un sous-marin américain. A cette occasion, on a pu isoler les microorganismes. On rencontre parfois des colonies d'animaux - par exemple le ver géant Riftia pacifica.
Il existe deux types de sources hydrothermales :

- les fumeurs noirs, découverts deux ans plus tard, où les fluides sortent à des températures de 350-400 °C ;
- les fumeurs, diffuseurs froids, où la température est plus basse, en raison du mélange d'eau de mer froide avec les premières couches de fluides.
Les sources hydrothermales émettent des fluides très réduits, et souvent des gaz très toxiques pour nous (sulfure d'hydrogène, méthane), mais aussi beaucoup de métaux lourds provenant du lessivage des couches basaltiques. Ces gaz très toxiques s'avèrent très utiles pour le développement des communautés d'organismes qui y vivent. Ils sont en effet autotrophes c'est-à-dire capables de fabriquer leur propre matière organique à partir de matière inorganique (CO2) et obtiennent leur énergie à partir de réactions d'oxydoréduction qui font intervenir les composés réduits issus des fluides. Leur métabolisme est dit chimiolitho-autotrophe.
Ces organismes sont très importants parce qu'ils sont à la base de la chaîne trophique : ils réalisent la production primaire dans l'écosystème, qui est complètement indépendant de la lumière solaire (Dans les écosystèmes terrestres, les plantes occupent la même fonction, mais fixent le carbone inorganique en utilisant l'énergie solaire (processus de photosynthèse).
Ils peuvent ainsi nourrir les autres animaux à proximité.
C'est justement à proximité d'une cheminée du rift medio-atlantique qu'on a isolé l'organisme le plus thermophile connu jusqu'à présent Pindobus fumari, une archae qui peut vivre jusqu'à 113 °C.
Une condition indispensable pour la vie est la présence d'eau à l'état liquide. Dans ces sources hydrothermales de grande profondeur, on peut encore trouver de l'eau liquide à plus de 100°C grâce au poids de la colonne d'eau, dont la pression maintient l'eau à l'état liquide. Ces organismes sont en général anaérobies stricts c'est-à-dire que la présence d'oxygène les tue. Le fluide étant très réduit ne contient pas d'oxygène.
Comme exemple d'Archae hyperthermophiles sous-marines, je tiens à citer Pyroccocus abyssi, isolé par une équipe française de Roscoff, très connu, car il a été choisi comme modèle biologique pour ces organismes et son génome complètement séquencé. Enfin, il existe quelques exemples de bactéries hyperthermophiles, moins thermophiles que les Archae. Ainsi, T hermotaga maritana caractérisé par la présence de capsules, ou Aquifex pyrophilus.
Là où la vie se développe, les parasites de la vie apparaissent également. Les hyperthermophiles n'échappent pas à la règle. On trouve des virus capables de parasiter ces organismes - virus filamenteux ou en forme de citrons. Ils ne sont pas encore très connus. Il n'y a pas d'inquiétude à avoir en ce qui nous concerne : nous sommes trop loin dans la fourchette de température pour qu'ils nous affectent.

Les organismes hyperthermophiles sont importants au niveau de la biotechnologie. Ils peuvent être utilisés pour décontaminer des polluants ou des boues résiduelles de l'industrie, qui sont très chaudes. Certaines de leurs enzymes sont ajoutées au détergent pour la lessive à haute température. L'application probablement la plus importante concerne l'utilisation de certaines ADN polymerases pour la réaction de PCR - la Réaction en Chaîne de Polymérisation de l'ADN. Cette réaction permet d'amplifier l'ADN, c'est-à-dire qu'à partir d'une infime quantité d'ADN, on peut en produire de grande quantité, à l'identique. Cette technique a été une révolution en biologie moléculaire. Aujourd'hui, la PCR est utilisée en routine par tous les laboratoires de biologie moléculaire, mais aussi par les hôpitaux, ou la police - elle permet à partir d'un cheveu, de relever une empreinte génétique et de la comparer à celle d'un suspect.

A l'opposé de la gamme de température, se situent les organismes psychrophiles (qui aiment le froid). Ils se développent à moins de 5°C, aux alentours de 0°C. Comme pour les organismes vivant à hautes températures, le facteur limitant reste les ressources en eau liquide. On peut rencontrer de l'eau liquide à moins de 0°C : par exemple dans les eaux salées, ou sous les glaciers, où l'eau reste liquide sous l'effet de la pression. Ces organismes se rencontrent dans les grands fonds océaniques : en profondeur, la température avoisine les 2°C. On les retrouve également dans la neige de montagne ou les banquises. Ce sont par exemple des algues rouges qui forment des tâches rougeâtres. Souvent, ils se développent au niveau de petites crevasses où l'eau salée s'accumule en saumures, qui abritent ces organismes. Un des environnements les plus étudiés pour ces organismes psychrophiles est l'Antarctique, à partir des carottes de glace. Ces organismes peuvent se développer dans la glace, où ils forment des couches - couches d'algues rouges ou vertes.
D'autres microorganismes peuvent être présents : des organismes hétérotrophes, qui profitent de la fixation de matière organique par la photosynthèse, réalisée au niveau des couches supérieures. C'est au niveau du pôle sud qu'on a détecté le record d'activité microbien à basse température : à - 12°C à - 17°C.
Il faut cependant distinguer les organismes psychrotolérants qui peuvent vivre dans les mêmes environnements que les organismes psychrophiles. Par exemple, les ours sont dits psychrotolérants, car leur métabolisme interne se réalise à 37 °C (ils réalisent une homéostase de leur température interne). Ce n'est pas le cas des microorganismes psychrophiles vrais, qui supporte la température extérieure sans homéostasie.
Les milieux hyper salins
Les organismes halophiles aiment les fortes concentrations de sel, et peuvent vivre jusqu'à saturation en sel - le sel précipite. On les retrouve dans certaines mines de sel, et très souvent dans les salines d'eau de mer. D'étang en étang, la concentration en sel augmente jusqu'à atteindre la saturation. La couleur rouge des différents étangs correspond à la couleur des pigments de ces microorganismes. Ils peuvent adopter des formes parfois très surprenantes. Dans les étangs les plus salés, on peut avoir des cellules carrées et très aplaties.
Les pH extrêmes
Les organismes alcaliphiles vivent à pH alcalin, au dessus de pH 9. Ils sont capables de résister à l'eau de Javel. Très souvent, ces organismes sont associés à des milieux très salés. C'est le cas de lacs de type Natron, en Afrique du Nord, où les Egyptiens se procuraient les natrons pour embaumer leurs morts. On en retrouve également dans d'autres types de lacs, moins salés, où ils forment des stromatolites qui peuvent atteindre plusieurs mètres de haut.
Les organismes acidophiles au contraire, se rencontrent à pH très bas. Certains peuvent vivre sans problème dans l'acide sulfurique. Ils se rencontrent dans différents milieux - zones volcaniques, zones minières, rivières acides du Nord de l'Espagne. La couleur rouge est due à la présence de fer, à pH 2. L'organisme le plus acidophile connu est Picrophilus achemaï, isolé d'un solfatare au Japon. Son pH optimum est de 0,7 et il peut vivre sans problème à pH 0. Ils sont très utiles en biotechnologie, pour la lixiviation des métaux - On arrose des piles de minéraux avec de l'eau contenant ces microorganismes. Ces microorganismes se chargent de lessiver et de solubiliser les métaux présents dans les piles de minéraux - On les utilise également pour la désulfuration du charbon.
Pression
Les organismes barophiles (ou piezophiles) aiment les fortes pressions. On les trouve dans les grands fonds, autour de -11 000 mètres, comme dans la fosse des Mariannes ou dans la croûte terrestre, sous la masse du sol continental.
Sécheresse et radiations
Les organismes xérophiles supportent les forts dessèchements. On les retrouve dans le désert, connus sous le nom de « vernis du désert ». Ils peuvent vivre dans des cailloux, ce qui leur permet de se protéger, à la fois de la perte d'eau et des fortes radiations solaires.
Les organismes radiotolérants supportent les fortes radiations. Ce sont des bactéries normalement protégées contre les fortes dessiccations, ce qui implique des systèmes de réparation de l'ADN très puissants. Cela leur confère également une protection contre les radiations. On a pu par exemple isoler ces microorganismes à Tchernobyl ou dans l'Antarctique, sous le trou d'ozone.
Le sous-sol
Pour l'instant, nous avons fait un petit parcours pour différents types d'environnements extrêmes, sur Terre. Il nous manque encore un environnement très étendu : la biosphère souterraine.
La vie existe également dans la croûte terrestre : on a détecté de l'activité microbienne dans les sous-sols océaniques ou continentaux, dans des dépôts de sels, des mines profondes, des aquifères profonds et les grottes.
Les microorganismes de ces environnements occupent de petites crevasses, en densité très faible. Souvent, dans les environnements souterrains, les nutriments manquent par rapport aux besoins des organismes. Dans ces conditions, on suppose que ces organismes présentent une activité métabolique très faible et qu'ils ne se divisent qu'une fois par mois ou par an - très rarement, sans doute. En général, ces organismes sont chimiolitho-autotrophes. Ce sont des organismes qui fabriquent leur propre matière organique, en utilisant des composés inorganiques de la croûte pour produire des réactions énergétiques.
On a isolé des organismes jusqu'à 100 km de profondeur dans la croûte. Ainsi, Vasilius infernus a été isolé à une profondeur de 2, 7 km. Parfois, on n'arrive pas à isoler et/ou cultiver ces microorganismes en laboratoire. On réussit cependant à les visualiser, en utilisant des colorants spécifiques.
Apparemment, c'est la température qui limite la vie en profondeur. On parvient à détecter des traces de vie à des profondeurs où la température est compatible avec la vie, autour de 100-110 °C.
Les formes de survie
Du point de vue de la résistance à long terme et de la longévité, un aspect important est la survie dans les conditions extrêmes. Il n'est plus question ici de vie, mais de survie ou de résistance à long terme.
Quand les conditions deviennent trop défavorables, beaucoup d'organismes sont capables d'entrer en dormance, en adoptant des formes de résistance spécifiques. C'est le cas de nombreuses bactéries qui fabriquent des spores. Sous de telles formes, ils sont capables de résister très longtemps à des conditions très défavorables. Quand les conditions sont de nouveau favorables, ils se "réveillent" et peuvent se développer de nouveau.

Ainsi, on a exposé des formes de résistance de bactéries halophiles, présentes à l'intérieur de cristaux de sel, au rayonnement cosmique, pendant deux semaines. Elles y ont résisté.
Les deux meilleures adaptations pour assurer sa survie à long terme sont :
- d'une part, la dessiccation. C'est la méthode développée par les organismes halophiles, au centre de nucléation des cristaux. Ils peuvent résister ainsi pendant des années.
- d'autre part, la cryopréservation. Les microbiologistes savent que la meilleure façon de conserver des souches microbiennes consiste à les congeler à -80°C. Le froid agit de la même manière dans la nature et permet la survie des organismes. Un exemple est donné par une mousse issue du permafrost (sol gelé en permanence), datant de 40 000 ans, qu'on a pu faire pousser.

III. Le lien entre organismes extrêmophiles et exobiologieA. L'existence de vie hors Terre
La découverte des extrêmophiles a permis de s'interroger de façon beaucoup plus convaincante sur la question de l'existence de vie ailleurs que sur Terre, dans l'univers. En effet, il est certain que plusieurs types d'organismes extrêmophiles pourraient se développer dans les conditions offertes par d'autres planètes.
Dans notre système solaire, les deux planètes les plus favorables à l'étude de vie "extra terrestre" sont :
- Europa, une planète satellite de Jupiter, très froide. Elle possède une calotte de glace sous laquelle pourrait exister de l'eau à l'état liquide. La présence de liquide est un élément indispensable à la vie, telle qu'on la connaît du moins.
- Mars, la planète rouge, est le deuxième candidat. Sa surface est complètement stérile. Cependant, on pense qu'à l'intérieur pourrait se trouver de l'eau, et, comme la température augmente avec la profondeur, cette eau pourrait être liquide. La vie pourrait donc se développer à l'intérieur de la croûte. Même si la vie sur Mars n'existe pas actuellement, ce qui reste probable, les conditions régnant sur cette planète au début de son histoire étaient très semblables à celles de la Terre. Par la suite, comme Mars a moins de masse que la Terre, elle a perdu son atmosphère.
B. L'origine de la vie sur Terre

Tout d'abord, un petit rappel sur l'histoire de la vie sur Terre. Elle s'est formée il y a 4,6 milliards d'années. Les premiers organismes seraient apparus vers 3,8 - 3,9 milliards d'années. On date les premiers fossiles procaryotes à 3,5 milliards d'années. La nature de ces fossiles est aujourd'hui très controversée : on pensait qu'il s'agissait de cyanobactéries, mais il est possible qu'il s'agisse de procaryotes thermophiles - le débat reste ouvert. Les organismes eucaryotes apparaissent beaucoup plus tard. L'oxygène, absent au début la vie, apparaît il y a 2, 1 milliards d'années. Nous, les êtres humains, sommes apparus à la fin de l'échelle : il y a 2 millions d'années.
Le modèle le plus classique pour expliquer l'origine de la vie sur Terre a été développé dans les années 1920 par le chimiste russe , A.I. Oparin et l'anglais J.B.S. Haldane. Cette théorie défend une origine de la vie à basse température et hétérotrophe. Les premiers organismes vivants se seraient développés au niveau des mares à partir de molécules organiques simples formées grâce à la synthèse prébiotique, favorisée par les rayonnements UV et les décharges électriques. A partir de ces molécules organiques simples, les macromolécules se seraient formées : ARN, protéines, puis ADN. Ensuite, les premières cellules et... l'évolution de la vie.
Cependant, la découverte des hyperthermophiles, plus que tout autre extrêmophile, a ravivé le débat sur l'origine de la vie sur Terre. Leur connaissance a en effet suggéré de l'idée d'une origine de la vie chaude et autotrophe. Dans ce cadre, la vie serait apparue dans des environnements similaires aux sources hydrothermales sous-marines. Les premiers organismes vivants auraient été des chimiolitho-autotrophe - qui fabriquent leur matière organique et obtiennent leur énergie à partir de composés réduits. Cette idée d'une origine chaude et autotrophe de la vie est soutenue par trois types d'arguments :
- des arguments géologiques. La Terre était probablement plus chaude au moment où la vie est apparue. En effet, la Terre venait de s'agréger et se serait refroidie peu à peu.
- des arguments phylogénétiques : certains auteurs ont proposé une origine de la vie dans la branche des bactéries. Dans ce cas, les lignées les plus proches de la racine de la vie correspondent à des hyperthermophiles. L'ancêtre commun de tous les êtres vivant serait lui-même un hyperthermophile. Le problème est que cette position de la racine n'est reste pour l'instant qu'une hypothèse non validée.
- des arguments métaboliques. Les métabolismes rencontrés chez les hyperthermophiles représentent toute une variété de réactions d'obtention d'énergie qui font intervenir des composés qu'on trouve dans les sources hydrothermales. Le soufre et le fer sont souvent impliqués dans ces réactions. Ce constat rappelle une théorie de Günther Wächtershäuseren en 1988, selon laquelle la vie serait apparue sur des surfaces de pyrite (sulfure de fer), car le gaz carbonique de l'atmosphère aurait pu former des molécules organiques en présence de sulfure d'hydrogène et de sulfure de fer.
Cependant, l'idée d'une origine chaude et autotrophe de la vie est très contestée. Certains auteurs proposent que le dernier ancêtre commun soit un organisme de type eucaryote. Or, comme les eucaryotes ne peuvent pas être hyperthermophiles, la vie serait apparue à basse température. D'autres avancent que la vie aurait effectivement pu apparaître à basse température, mais que le dernier ancêtre commun serait un hyperthermophile. En effet, seuls des hyperthermophiles auraient pu survivre aux bombardements de météorites qu'a connu la Terre au début de son histoire et qui auraient presque entièrement stérilisé la Terre, sauf, justement, les sources hydrothermales sous-marines.
Cependant, hormis les hyperthermophiles, d'autres extrêmophiles dans d'autres environnements sont importants pour la recherche en exobiologie :
- ceux des environnements froids (zones glaciaires, permafrost) et les psychrophiles, en raison d'une possibilité de vie sur Europa.
- ceux des milieux hyper salés, notamment les évaporites, roches obtenues par évaporation, qui préservent très bien les traces de vie passée. On a détecté sur Mars des structures qui ressemblent à ces roches. Si la vie a existé sur Mars, il est possible que ces formations en conservent des traces.
- ceux du milieu souterrain, sous la croûte terrestre, en raison des possibilités de formes de vie similaires sur Mars.
Conclusion
Les extrêmophiles nous montrent donc quelles sont, sur Terre, les limites de la vie, mais ils permettent également d'ouvrir des horizons nouveaux à la vie, dans l'Univers.


Glossaire

Fumeur : édifice en forme de cheminée construit sur les fonds océaniques par des fluides hydrothermaux qui précipitent des sulfures polymétalliques
Solfatare : terrain vocanique d'où sortent des fumerolles sulfureuses chaudes
Natron : carbonate de sodium hydraté naturel. Les Egyptiens utilisaient le natron pour déhydrater les corps à momifier.
Hétérotrophe : qui a besoin d'une source organiques déjà synthétisé pour assurer sa nutrition.
Autotrophe : qui peut fabriquer sa matière organique à partir d'éléments exclusivement minéraux.
Homéostasie : faculté qu'ont certains êtres vivants de maintenir ou de rétablir certaines constantes physiologiques (pression artérielle, température) quelles que soient les variations du milieu extérieur
Stromatolite : concrétion discoïde constituée par des amas de bactéries fossilisées
Cyanobactérie : procaryote capable de réaliser la photosynthèse (anciennement « algue bleu »)

 

VIDEO             CANAL  U             LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google