|
|
|
|
|
|
Du multi-recyclage en REP à la fermeture du cycle |
|
|
|
|
|
Du multi-recyclage en REP à la fermeture du cycle
Pour répondre aux enjeux stratégiques de fermeture du cycle, le CEA mène des études, recherches et développements sur des procédés de multi-recyclage du combustible usé, à moyen terme, en réacteurs à eau pressurisée (REP) et, à plus long terme, dans des réacteurs à neutrons rapides (RNR).
PUBLIÉ LE 28 JUILLET 2021
Le multi-recyclage en REP
Des études sont menées par le CEA, Orano, EDF et Framatome pour mesurer l’intérêt, la faisabilité, la compétitivité et la performance du multi-recyclage de l’uranium et du plutonium dans les REP. Elles concernent de nombreuses questions telles que la sûreté en réacteur, les procédés de traitement et de fabrication, le transport, l’entreposage et le stockage des déchets produits.
LES BÉNÉFICES DU MULTI-RECYCLAGE EN REP
Ce multi-recyclage en REP permettrait de stabiliser l’inventaire des combustibles usés produits par le parc de réacteurs français en réutilisant intégralement l’uranium et le plutonium issus du traitement des combustibles UOx et MOX. Il contribuerait de plus à diminuer encore la consommation d’uranium naturel : 10 % de moins par rapport au mono-recyclage et 20 % par rapport à un cycle sans recyclage, dit ouvert.
LES CONTRAINTES À PRENDRE EN COMPTE
Cependant, la dégradation de la qualité du plutonium lors de son recyclage en REP nécessite de concevoir de nouveaux assemblages combustibles contenant du plutonium et de l’uranium enrichi, à la différence du MOX qui est fait en utilisant de l’uranium appauvri.
De plus, le recyclage de l’ensemble des matières issues de tous les combustibles usés conduit à augmenter les quantités de plutonium dans le cycle du combustible et dans les réacteurs. Les conséquences de cette augmentation sur les performances des réacteurs (sûreté et exploitation) et le cycle du combustible (traitement, fabrication, transport, entreposage) doivent être prises en compte.
La fermeture du cycle
Les développements technologiques nécessaires à la mise en œuvre du multi-recyclage en REP sont précurseurs de ceux nécessaires pour la fermeture du cycle. Le multi-recyclage en REP serait ainsi une étape importante avant le déploiement, à long terme, du multi-recyclage au moyen de réacteurs à neutrons rapides (RNR) et d’usines du cycle associées. Un déploiement de réacteurs de ce type n’est pas programmé en France avant la deuxième moitié du 21e siècle mais le CEA et ses partenaires industriels poursuivent les développements de procédés de traitement et de fabrication de nouveaux combustibles adaptés, en particulier, aux teneurs élevées en plutonium, caractéristiques des combustibles des RNR (de l’ordre de 25 % contre 10 % dans les combustibles MOX des REP).
LES BÉNÉFICES DU MULTI-RECYCLAGE EN RNR
Les réacteurs à neutrons rapides valorisent tous les isotopes du plutonium, ce qui permet un recyclage récurrent du combustible. De plus, la consommation de plutonium des RNR peut être compensée dans ces réacteurs par la capture de neutrons rapides par l’238U qui conduit à la génération de 239Pu. Ainsi, le parc de RNR produirait lui-même son combustible fissile à partir des réserves d’uranium appauvri présentes en France, permettant ainsi à la France d’atteindre son indépendance vis-à-vis des ressources naturelles d’uranium.
Par ailleurs, les RNR génèrent environ quatre fois moins d’actinides mineurs, qui sont des déchets à vie longue, que les réacteurs du parc actuel, tout en produisant la même quantité d’électricité. Ils seraient même capables de « brûler » ces éléments, en particulier l’américium, en les transformant en produits de fission à la durée de vie beaucoup plus courte. Cette opération, dite de transmutation, a fait l’objet de recherches poussées, tant en France, par le CEA, qu’au Japon et aux États-Unis. Les déchets pourraient ainsi retrouver en trois siècles, au lieu de plusieurs dizaines de millénaires, une radiotoxicité comparable à celle du minerai d’uranium naturel.
La R&D sur la séparation-transmutation se poursuit actuellement dans un cadre européen (projets Horizon 2020 GENIORS et PATRICIA) et une voie plus innovante, mettant en œuvre des réacteurs à sels fondus, va être explorée afin d’en identifier toutes les potentialités, mais également les verrous technologiques.
DOCUMENT cea LIEN |
|
|
|
|
|
|
L'énergie |
|
|
|
|
|
L'énergie
Publié le 20 décembre 2017
Nous sommes tous entourés d'énergie : dans notre corps, notre maison, notre environnement... Elle est là, dans notre quotidien. Qu'est-ce que l'énergie ? Quelles sont les différentes formes de l'énergie ? Ses sources ? Que signifient les expressions "énergies primaires", "énergies secondaires", "énergies renouvelables", "énergies non-renouvelables", "énergies fossiles" ?
QU'EST-CE QUE L'ÉNERGIE ?
Le mot « énergie » vient du Grec Ancien « énergéia », qui signifie « La force en action ». Ce concept scientifique est apparu avec Aristote et a fortement évolué au cours du temps. Aujourd’hui, l’énergie désigne « la capacité à effectuer des transformations ». Par exemple, l’énergie c’est ce qui permet de fournir du travail, de produire un mouvement, de modifier la température ou de changer l’état de la matière. Toute action humaine requiert de l’énergie : le fait de se déplacer, de se chauffer, de fabriquer des objets et même de vivre.
L’énergie est partout présente autour de nous : dans la rivière qui fait tourner la roue du moulin, dans le moteur d’une voiture, dans l’eau de la casserole que l’on chauffe, dans la force du vent qui fait tourner les éoliennes… et même dans notre corps humain.
Une énergie de qualité
Toutes les formes d’énergie n’ont pas la même « valeur ». Dans les machines, on distingue classiquement l’énergie mécanique, ou travail, de l’énergie thermique, ou chaleur. La première est beaucoup plus utile que la seconde. C’est elle qui permet de déplacer les objets ou de les déformer.
De son côté, la chaleur a tendance à se diluer dans la matière et seule une petite partie peut être transformée en énergie mécanique. C’est ce qui fait qu’une centrale électrique n’arrive à transformer qu’un tiers de la chaleur de son feu de charbon ou de ses fissions nucléaires en électricité, le reste étant inutilisable et rejeté à l’extérieur.
LES DIFFÉRENTES FORMES D'ÉNERGIE
L’énergie peut exister sous plusieurs formes. Parmi les principales :
* L’énergie thermique, qui génère de la chaleur ;
* L’énergie électrique ou électricité, qui fait circuler les particules – électrons - dans les fils électriques ;
* L’énergie mécanique, qui permet de déplacer des objets ;
* L’énergie chimique, qui lie les atomes dans les molécules ;
* L’énergie de rayonnement ou lumineuse, qui génère de la lumière ;
* L’énergie musculaire qui fait bouger les muscles.
Conservation de l'énergie
L’énergie se conserve. La quantité totale d'énergie dans un système donné ne change pas, on ne peut donc ni la créer, ni la détruire. L'énergie est transmise d'un élément vers un autre, souvent sous une forme différente.
Un exemple : quand on chauffe de l'eau, différentes transformations d’énergie ont lieu. En brûlant dans l’air, le bois libère son énergie chimique. Cette énergie se transforme en chaleur, l’énergie thermique, et en lumière, l’énergie de rayonnement. Lors de cette réaction, la quantité d'énergie totale ne change pas, elle change simplement de forme.
Un autre exemple : lorsqu’une voiture fonctionne, l’essence libère son énergie chimique en brûlant dans l’air. Elle chauffe le moteur et pousse les pistons (énergie thermique et énergie mécanique). Les pistons font tourner le moteur et les roues, transfert d’énergie mécanique, et la voiture se déplace (énergie cinétique). Au passage, la courroie fait tourner l’alternateur qui transforme une petite partie de l’énergie mécanique en électricité qui sera stockée dans la batterie.
LES SOURCES D'ÉNERGIE
L’énergie est issue de différentes sources d’énergie qui peuvent être classifiées en deux groupes : les énergies non renouvelables, dont les sources ont des stocks sur Terre limités et les énergies renouvelables qui dépendent d’éléments que la nature renouvelle en permanence.
Les diverses sources d'énergie
Qu'est-ce qu'une énergie intermittente ?
Une énergie intermittente est une énergie pour laquelle les sources ne sont pas disponibles en permanence et dont la disponibilité varie fortement sans possibilité de contrôle. Les énergies solaire et éolienne sont définies comme intermittentes car leur efficacité varie en fonction de la météo et de paramètres extérieurs (jour/nuit).
Pour pallier à cette intermittence, il est nécessaire de stocker ces énergies. Le développement de technologies de stockage est un enjeu important de recherche et développement.
Pour plus d’informations sur le stockage de l’énergie, consultez notre dossier « l’essentiel sur… le stockage stationnaire de l’énergie ».
Les sources d'énergie non renouvelables
Énergies fossiles
Dans les énergies non renouvelables, on trouve les énergies dites fossiles : ce sont les résidus des matières végétales et organiques accumulés sous terre pendant des centaines de millions d’années. Ces résidus se transforment en hydrocarbure (pétrole, gaz naturel et de schiste, charbon…). Pour pouvoir les exploiter, il faut puiser dans ces ressources qui ne sont pas illimitées, c’est pourquoi les énergies fossiles ne sont pas renouvelables.
Énergie nucléaire
L’énergie nucléaire est « localisée » dans le noyau des atomes. Dans les centrales nucléaires actuelles, on utilise la fission (cassure) des noyaux d’uranium, élément que l’on retrouve sur Terre dans les mines. Les mines d’uranium s’épuiseront un jour tout comme le charbon, le gaz et le pétrole.
Au rythme de l’utilisation des ressources actuellement exploitées, on estime les réserves de pétrole à 40 ans, de gaz naturel conventionnel à 60 ans et de charbon à 120 ans. Les réserves d’uranium, combustible de l’énergie nucléaire, à 100 ans avec les réacteurs actuels.
Le saviez-vous ?
L’énergie nucléaire a un excellent bilan carbone : elle ne génère pas de CO2. Cependant, la production d’électricité avec le nucléaire génère des déchets radioactifs, dont la gestion spécifique est encadrée par la Loi.
Les sources d'énergies renouvelables
Le soleil, le vent, l’eau, la biomasse et la géothermie sont des sources qui ne s’épuisent pas et sont renouvelées en permanence.
Biomasse et géothermie : quelles différences ?
La biomasse et la géothermie sont deux sources d’énergies bien distinctes.
La géothermie est l’énergie générée par la chaleur des profondeurs de la Terre et sa radioactivité. Le mot « géothermie » vient du grec « geo » (la terre) et « thermos » (la chaleur). On l’exploite pour chauffer des habitations grâce à des forages légers.
La biomasse a, quant à elle, pour source le Soleil dont l’énergie de rayonnement est transformée en énergie chimique par les matières organiques d’origine végétale (bois), animale, bactérienne ou fongique (champignons). Il existe des centrales « biomasse » qui produisent de l’électricité avec la combustion de matières organiques.
Parmi toutes ces sources d’énergie, on distingue les énergies primaires des énergies secondaires.
Énergie primaire
Une énergie primaire est une énergie brute n’ayant pas subi de transformation, dont la source se trouve à l’état pur dans l’environnement. Le vent, le Soleil, l’eau, la biomasse, la géothermie, le pétrole, le charbon, le gaz ou l’uranium sont des sources d’énergies primaires.
Énergie secondaire
On appelle « énergie secondaire » une énergie qui est obtenue par la transformation d’une énergie primaire.
Par exemple, l’électricité est une énergie secondaire qu’on obtient à partir de plusieurs énergies primaires : l’énergie solaire avec des panneaux, l’énergie nucléaire avec des réacteurs, l’énergie hydraulique avec des barrages ou encore l’énergie du vent avec des éoliennes. Il n’existe pas d’électricité à l’état naturel.
L’essence, le gasoil et les biocarburants sont également des énergies secondaires ; on les obtient par la transformation du pétrole, qui lui, est brut ou de la biomasse. L’hydrogène, qui n'existe pas à l'état pur, est également une énergie chimique secondaire car il faut le produire.
La domestication des sources d'énergie au fil du temps
La maîtrise des sources d’énergie par l’Homme remonte à 400 000 ans av. J-C. A l’époque, l’Homme apprend à maîtriser le feu. Puis, plus tard, il apprend à maîtriser le vent, l’eau avec des moulins….
Avec l’ère industrielle, l’Homme commence à exploiter des ressources fossiles (charbon, puis pétrole et gaz) et à développer des machines qui vont changer son mode de vie. Depuis, les besoins en énergie n’ont cessé d’augmenter.
En chiffres
81 % des besoins mondiaux en énergie primaire sont actuellement comblés par le pétrole, le charbon et le gaz.
Source : Données 2019 de l'Agence internationale de l'énergie
Énergie et puissance
On mesure l’énergie à l’aide d’une unité particulière nommée le joule. Son nom vient du physicien anglais James Prescott Joule. Un joule représente par exemple l'énergie requise pour élever une pomme de 100 grammes d'un mètre ou encore l'énergie nécessaire pour élever la température d'un gramme (un litre) d'air sec de un degré Celsius.
Dans le domaine de la nutrition, c’est la kilocalorie qui est utilisée. 1 kilocalorie équivaut à 4,2 kilojoules. Pour évaluer l’énergie utilisée sur une année, on utilise généralement la tonne équivalent pétrole, tep.
1 tep est égale à 41 868 000 000 joules.
La puissance correspond, quant à elle, à la vitesse à laquelle l'énergie est délivrée. Elle se mesure en watt, ce qui correspond à un joule par seconde.
Par exemple, si pour faire bouillir un litre d’eau, on utilise d’un côté une flamme d’un gros feu de bois et de l’autre, la flamme d’une bougie : dans les deux cas, la même quantité d’énergie sera utilisée pour faire bouillir l’eau. Seulement, ce sera fait plus rapidement avec un feu qu’avec une bougie. L'énergie est dégagée plus rapidement avec le feu de bois qu'avec la flamme de la bougie. Le feu de bois est donc plus puissant que la flamme de la bougie.
UTILISATION DES ÉNERGIES EN FRANCE ET ENVIRONNEMENT
L’énergie, en France, est surtout utilisée pour le transport, l’habitat (chauffage), l’industrie, le tertiaire et l’agriculture.
En chiffres
En 2019, un Français a en moyenne consommé 30 fois plus d’énergie qu’un habitant d’Afrique de l’Est.
Source : Connaissance des Énergies, d'après BP Statistical Review of World Energy
Bien que la dépendance énergétique de la France se soit réduite depuis 1973 grâce à la construction du parc nucléaire, son mix énergétique dépend encore fortement des énergies fossiles qui couvrent près de 50 % de la consommation d’énergie primaire. A eux seuls, le transport et l’habitat représentent en France près de 80 % de la consommation finale. Le bâtiment dépend à plus de 50 % [2] des combustibles fossiles et le transport à 95 % du pétrole. Ces deux secteurs sont à l’origine de plus de 50 % des émissions de CO2, l’un des principaux gaz à effet de serre.
Ces émissions impactent directement le climat en contribuant au réchauffement climatique. Face à ce défi climatique majeur, il devient indispensable de disposer de sources d’énergie à la fois compétitives et bas carbone (faiblement émettrices de gaz à effet de serre) et de faire évoluer le mix énergétique de la France.
Les défis énergétiques
Toute action humaine requiert de l’énergie. Depuis toujours, l’Homme a cherché à accéder à des sources d’énergie abondantes et peu chères pour satisfaire ses besoins. Mais depuis le début de la révolution industrielle, la société moderne utilise sans compter de l’énergie provenant de sources, qui sont, pour la plupart, non renouvelables. Conséquence, les ressources s’épuisent et la quantité d’émission de gaz à effet de serre dans l’atmosphère, issue de l’exploitation des ressources fossiles, menace le climat. Face à ces réalités, il devient nécessaire de :
* Mieux gérer l’utilisation des énergies en faisant notamment moins de gaspillage ;
* Repenser notre mix énergétique en utilisant des sources d’énergie bas carbone tels que le nucléaire et les énergies renouvelables ;
* Améliorer les technologies de stockage de l’énergie (batteries, hydrogène) ;
* Continuer à travailler sur les énergies du futur : nucléaire du futur (fission et fusion nucléaire), solaire, éolien, bioénergies.
DOCUMENT cea LIEN
|
|
|
|
|
|
|
QU'EST-CE QU'UNE PARTICULE ? (LES INTERACTIONS DES PARTICULES) |
|
|
|
|
|
QU'EST-CE QU'UNE PARTICULE ? (LES INTERACTIONS DES PARTICULES)
Réalisation : 27 juillet 2000 - Mise en ligne : 27 juillet 2000
* document 1 document 2 document 3
* niveau 1 niveau 2 niveau 3
*
Descriptif
En principe, une particule élémentaire est un constituant de la matière (électron par exemple) ou du rayonnement (photon) qui n'est composé d'aucun autre constituant plus élémentaire. Une particule que l'on croit élémentaire peut par la suite se révéler composée, le premier exemple rencontrée ayant été l'atome, qui a fait mentir son nom dès le début du XXe siècle. Nous décrirons d'abord l'état présent des connaissances, résultat des quarante dernières années de poursuite de l'ultime dans la structure intime de la matière, de l'espace et du temps, qui ont bouleverse notre vision de l'infiniment petit. Puis, nous essaierons de conduire l'auditeur dans un paysage conceptuel d'une richesse extraordinaire qui nous a permis d'entrevoir un peuple d'êtres mathématiques - déconcertants outils permettant d'appréhender des réalités inattendues - et dans lequel de nombreuses régions restent inexplorées, où se cachent sans doute des explications sur la naissance même de notre univers.
Documents pédagogiques
Texte de la 208e conférence de l’Université de tous les savoirs donnée le 27 juillet 2000.Qu'est-ce qu'une particule élémentaire?par André NeveuIntroduction De façon extrêmement pragmatique, une particule élémentaire est un constituant de la matière (ou du rayonnement) qui ne nous apparaît pas comme lui-même composé d'éléments encore plus élémentaires. Ce statut, composé ou élémentaire, est à prendre à un instant donné, et à revoir éventuellement avec l'affinement des procédés d'investigation. Mais il y a plus profond dans cet énoncé : chaque étape de l'investigation s'accompagne d'une interprétation, d'une recherche d'explication sur la manière dont ces particules interagissent pour former des entités composées à propriétés nouvelles, c'est à dire d'une construction théorique qui s'appuie sur des mathématiques de plus en plus abstraites, et qui, au cours de ce siècle, a contribué à plusieurs reprises au développement de celles-ci. Le long de cette quête d'une construction théorique cohérente, des problèmes peuvent apparaître, qui conduisent à la prédiction de particules ou d'interactions non encore découvertes, et ce va et vient entre théorie et expérience également raffinées où chacune interpelle l'autre, n'est pas le moins fascinant des aspects de cette quête de l'ultime. Aspect qui se retrouve d'ailleurs dans bien d'autres domaines de la physique. C'est là qu'est la vie de la recherche, plus que dans la construction achevée : les faits nous interpellent et à notre tour nous les interpellons. Où en sommes-nous aujourd'hui ? Une brève descente dans l'infiniment petit Comme chacun sait, la chimie et la biologie sont basées sur le jeu presque infini de molécules constituées d'atomes. Comme l'étymologie l'indique, on a cru ceux-ci élémentaires, et, effectivement, pour la chimie et la biologie, on parle toujours à juste titre d'éléments chimiques, oxygène, hydrogène, carbone, etc. L'ordre de grandeur de la dimension d'un atome est le dix milliardième de mètre. Depuis le début du siècle, on sait que chaque atome est formé d'électrons autour d'un noyau, cent mille fois plus petit que l'atome. Le noyau est lui-même constitué de protons et de neutrons liés entre eux par des forces de liaison nucléaires mille à dix mille fois plus grandes que les forces électrostatiques qui lient les électrons au noyau. Alors que les électrons restent à ce jour élémentaires, on a découvert il y a quarante ans environ que les protons et les neutrons eux-mêmes sont composés de quarks liés entre eux par des forces encore plus grandes, et nommées interactions fortes à ce titre (en fait, elles sont tellement fortes qu'il est impossible d'observer un quark isolé). Au cours de cette quête des cinquante dernières années, à l'aide principalement des grands accélérateurs comme ceux du CERN, on a découvert d'autres particules, neutrinos par exemples et des espèces d'électrons lourds (muon et lepton τ), et diverses espèces de quarks, la plupart de durée de vie extrêmement courte, leur laissant, même à la vitesse de la lumière, à peine le temps de faire une trace de quelques millimètres dans les appareils de détection, et aussi les antiparticules correspondantes. quarksuctgluonsdsb interactions fortesleptonsneutrinosυeυμυτW+ γ Z0 W-chargéseμτ interactions électrofaiblesgravitontrois « générations » de matièrevecteurs de forces Figure 1 Les particules élémentaires actuellement connues. À gauche les trois générations de fermions (quarks et leptons). Chaque quark existe en trois « couleurs », « vert », « rouge » et « bleu ». Chaque lepton chargé (électron e , muon μ et tau τ ) est accompagné d'un neutrino. À droite les vecteurs de forces : gluons, photon γ , bosons W et Z , graviton. La figure 1 présente l'ensemble des particules actuellement connues et considérées comme élémentaires, quarks et leptons, et des vecteurs de forces (voir plus bas) entre eux. Alors que les leptons s'observent isolément, les quarks n'apparaissent qu'en combinaisons « non colorées » : par exemple, le proton est formé de trois quarks (deux u et un d), un de chaque « couleur », (laquelle n'a rien à voir avec la couleur au sens usuel) « vert », « bleu », « rouge », pour que l'ensemble soit « non coloré ». D'autres particules, pions π et kaons K par exemple, sont constituées d'un quark et d'un antiquark, etc., tout cela de façon assez analogue à la formation de molécules en chimie à partir d'atomes. Pour avoir une idée de toute la richesse de combinaisons possibles et en même temps de la complexité et du gigantisme des appareils utilisés pour les détecter, je vous invite vivement à visiter le site du CERN, http ://www.cern.ch. Figure 2 Un événement observé aux anneaux de collision électrons-positrons du LEP. La figure 2 est un piètre exemple en noir et blanc de ce qu'on peut trouver en splendides couleurs sur ce site, une donnée expérimentale presque brute sortie du grand détecteur Aleph au collisionneur électrons-positrons LEP : les faisceaux d'électrons et positrons arrivent perpendiculairement à la figure, de l'avant et de l'arrière, au point d'interaction IP, où ils ont formé un boson Z de durée de vie extrêmement courte, qui s'est désintégré en une paire quark-antiquark, rapidement suivis de la création d'autres paires qui se sont réarrangées pour donner les traces visibles issues de IP et d'autres invisibles, car électriquement neutres, mais éventuellement détectables au moment de leur désintégration en particules chargées (pion, kaons et électrons en l'occurrence). En mesurant les longueurs des traces et les énergies des produits de désintégration et leur nature, on parvient à remonter aux propriétés des quarks produits au point IP et des mésons qu'ils ont formés. Cette figure, par son existence même, est un exemple de va et vient théorie-expérience : il faut avoir une idée très précise du genre d'événement que l'on cherche, et d'une interprétation possible, car il s'agit vraiment de chercher une aiguille dans une meule de foin : il y a un très grand nombre d'événements sans intérêt, que les ordinateurs qui pilotent l'expérience doivent rejeter avec fiabilité. Il est intéressant de noter que plusieurs membres de la figure 1 ont été prédits par cohérence de la théorie (voir plus bas), les quarks c, b, t, et le neutrino du τ, détecté pour la première fois il y a quinze jours, et, dans une certaine mesure, les bosons W et Z. Comme l'appellation des trois « couleurs », les noms de beaucoup de ces particules relèvent de la facétie d'étudiants ! Après la liste des particules, il nous faut parler de leurs interactions, car si elles n'interagissent pas entre elles, et finalement avec un détecteur, nous ne les connaîtrions pas ! En même temps que leurs interactions, c'est à dire leur comportement, nous aimerions comprendre comment on en a prédit certaines par cohérence de la théorie, mais aussi la raison de leur nombre, des caractéristiques de chacune, bref le pourquoi de tout (une ambition qui est fortement tempérée par l'indispensable humilité devant les faits) ! Dans le prochain paragraphe, nous tenterons cette explication. Comprendre Symétries et dynamique : la théorie quantique des champs Ici, les choses deviennent plus difficiles. Vous savez que les électrons tournent autour du noyau parce qu'ils sont négatifs et le noyau positif, et qu'il y a une attraction électrostatique entre les deux. Cette notion de force (d'attraction en l'occurrence) à distance n'est pas un concept compatible avec la relativité restreinte : une force instantanée, par exemple d'attraction électrostatique entre une charge positive et une charge négative, instantanée pour un observateur donné, ne le serait pas pour un autre en mouvement par rapport au premier. Pour les forces électrostatiques ou magnétiques par exemple, il faut remplacer la notion de force par celle d'échange de photons suivant le diagramme de la figure 3a. Ce diagramme décrit l'interaction entre deux électrons par l'intermédiaire d'un photon. Il peut aussi bien décrire les forces électrostatiques entre deux électrons d'un atome que l'émission d'un photon par un électron de la figure que vous êtes en train de regarder suivi de son absorption par un électron d'une molécule de rhodopsine dans votre rétine, qu'il amène ainsi dans un état excité, excitation ensuite transmise au cerveau. On remplace ainsi la force électromagnétique à distance par une émission et absorption de photons, chacune ponctuelle. Entre ces émissions et absorptions, photons et électrons se déplacent en ligne droite (le caractère ondulé de la ligne de photon n'est là que pour la distinguer des lignes d'électrons. On dit que le photon est le vecteur de la force électromagnétique. Les autres vecteurs de force sur la figure 3 sont les gluons g, vecteurs des interactions fortes entre les quarks, les bosons W et Z, vecteurs des interactions « faibles » responsables de la radioactivité β, et le graviton, responsable de la plus ancienne des forces connues, celle qui nous retient sur la Terre. Remarquons que l'on peut faire subir à la figure 3a une rotation de 90 degrés. Elle représente alors la formation d'un photon par une paire électron-antiélectron (ou positron), suivie par la désintégration de ce photon en une autre paire. Si on remplace le photon par un boson Z, et que celui-ci se désintègre en quark-antiquark plutôt qu'électron-positron, on obtient exactement le processus fondamental qui a engendré l'événement de la figure 2. Figure 3 Diagrammes de Feynman 3a : diffusion de deux électrons par échange d'un photon. 3b : création d'une paire électron-positron. 3c : une correction au processus 3a. La figure 3b décrit un autre processus, où le photon se désintègre en une paire électron-positron. En redéfinissant les lignes, une figure identique décrit la désintégration β du neutron par la transformation d'un quark d en quark u avec émission d'un boson W qui se désintègre en une paire électron-antineutrino. Si les « diagrammes de Feynman » de la figure 3 (du nom de leur inventeur) sont très évocateurs de ce qui se passe dans la réalité (la figure 2), il est extrêmement important de souligner qu'ils ne sont pas qu'une description heuristique des processus élémentaires d'interactions entre particules. Ils fournissent aussi des règles pour calculer ces processus avec une précision en principe presque arbitraire si on inclut un nombre suffisant de diagrammes (par exemple, le diagramme de la figure 3c est une correction à celui de la figure 3a, dans laquelle il y a une étape intermédiaire avec une paire électron-positron, qui modifie légèrement les propriétés de l'absorption, par la ligne de droite, du photon qui avait été émis par la ligne de gauche). Ces règles sont celles de la théorie quantique des champs, un cadre conceptuel et opérationnel combinant la mécanique quantique et la relativité restreinte qu'il a fallu environ 40 ans pour construire, une des difficultés principales ayant été de donner un sens aux diagrammes du genre de la figure 3c. En même temps que la dynamique des particules, cette théorie donne des contraintes sur celles qui peuvent exister, ou plutôt des prédictions d'existence sur d'autres non encore découvertes, étant données celles qu'on connaît déjà. Ce fut le cas des quarks c, b et t, et du neutrino du τ. Elle implique aussi l'existence des antiparticules pour les quarks et leptons (les vecteurs de force sont leurs propres antiparticules). Un des guides dans cette construction a été la cohérence, mais aussi l'unification par des symétries, de plus en plus grandes au fur et à mesure de la découverte de particules avec des propriétés nouvelles, et on a trouvé que cohérence et unification allaient ensemble. Avoir un principe de symétrie est puissant, car il limite et parfois détermine entièrement les choix des particules et leurs interactions, mais aussi, une fois qu'on en connaît certaines, d'autres sont déterminées. Cela permet ainsi d'appréhender avec efficacité toute cette faune. Par exemple, la symétrie entre électron et neutrino, ou entre les quarks u et d conduit à la prédiction des bosons W, mais alors on s'aperçoit immédiatement qu'en même temps il faut introduire le Z ou le photon ou les deux, et en même temps aussi leurs interactions sont déterminées. De même, le gluon et la force forte sont la conséquence d'une symétrie entre les trois « couleurs » de quarks. Ces symétries sont des rotations dans un espace interne, notion que nous allons à présent essayer d'expliciter avec une image simple en utilisant un Rubik’s cube. Un Rubik’s cube peut subir des rotations d'ensemble, que nous pouvons appeler transformations externes, et des transformations internes qui changent la configuration des couleurs de ses 9×6=54 facettes. Il faut imaginer qu'un électron ou un quark sont comme une configuration du cube, et que les symétries de la théorie sont les transformations internes qui font passer d'une configuration du cube à une autre. En fait, comme en chaque point de l'espace-temps il peut y avoir n'importe quelle particule, il faut imaginer qu'en chaque point de l'espace-temps il y a l'analogue d'un tel Rubik cube, espace « interne » des configurations de particules. Bien plus, on peut exiger que la théorie soit symétrique par rapport à l'application de transformations du cube différentes, indépendantes les unes des autres, en chaque point. On constate alors qu'on doit naturellement introduire des objets qui absorbent en quelque sorte le changement de la description de l'espace interne quand on passe d'un point à son voisin. Ces objets sont précisément les vecteurs des forces. De plus, les détails de la propagation, de l'émission et de l'absorption de ces particules vecteurs de forces sont prédits de façon à peu près unique. Il est facile d'imaginer que tout ceci fait intervenir une structure mathématique à la fois très complexe et très riche, malheureusement impossible à décrire dans le cadre de cette conférence. Un dernier ingrédient de la construction est la notion de brisure spontanée de symétrie. Car certaines des symétries dont il vient d'être question sont exactes (par exemple celle entre les « couleurs » des quarks), d'autres ne sont qu'approchées : par exemple, un électron et son neutrino n'ont pas la même masse. Dans le phénomène de brisure spontanée de symétrie, on part d'une théorie et d'équations symétriques, mais leurs solutions stables ne sont pas nécessairement symétriques chacune séparément, la symétrie faisant seulement passer d'une solution à une autre. Ainsi dans l'analogue classique d'une bille au fond d'une bouteille de Bordeaux : le problème de l'état d'équilibre de la bille au fond est symétrique par rotation, mais la position effectivement choisie par la bille ne l'est pas. Il y a une infinité de positions d'équilibre possibles, la symétrie par rotation du problème faisant seulement passer de l'une à une autre. La brisure de symétrie permet de comprendre le fait que les leptons chargés par exemple n'aient pas la même masse que leurs neutrinos associés, ou que le photon soit de masse nulle, alors que le W et le Z sont très lourds. L'ensemble de la construction trop brièvement décrite dans ce chapitre a valu le prix Nobel 1999 à Gerhardt 't Hooft et Martinus Veltman, qui en avaient été les principaux artisans dans les années 1970. À l'issue de tout ce travail, on a obtenu ce que l'on appelle le Modèle Standard. C'est l'aboutissement actuel d'unifications successives des forces, commencées par Maxwell au siècle dernier entre électricité et magnétisme (électromagnétisme) qui à présent incluent les interactions faibles : on parle des forces électrofaibles pour englober le photon et les bosons W et Z[1] . Le Modèle Standard prédit l'existence d'une particule, la seule non encore observée dans le modèle, le boson de Higgs, et comment celui-ci donne leur masse à toutes les particules par le mécanisme de brisure de symétrie. Ce dernier acteur manquant encore à l'appel fait l'objet d'une recherche intense, à laquelle le prochain accélérateur du CERN, le LHC, est dédiée. S'il décrit qualitativement et quantitativement pratiquement toutes les particules observées et leurs interactions (le « comment »), le Modèle Standard laisse sans réponse beaucoup de questions « pourquoi ». Par exemple pourquoi y a-t-il trois générations (les colonnes verticales dans la figure 1) ? Pourquoi la force électrofaible comprend-elle quatre vecteurs de force (il pourrait y en avoir plus) ? Par ailleurs toutes les masses et constantes de couplage des particules sont des paramètres libres du modèle. Il y en a une vingtaine en tout, ce qui est beaucoup : on aimerait avoir des principes qui relient ces données actuellement disconnectées. Peut-on unifier plus : y a-t-il une symétrie reliant les quarks aux leptons ? De plus, des considérations plus élaborées permettent d'affirmer que dans des domaines d'énergie non encore atteints par les accélérateurs, le modèle devient inopérant : il est incomplet, même pour la description des phénomènes pour lesquels il a été construit. Plus profondément, il laisse de côté la gravitation. La satisfaction béate ne règne donc pas encore, et nous allons dans le chapitre suivant présenter les spéculations actuelles permettant peut-être d'aller au delà. Au delà du Modèle Standard Grande unification, supersymétrie et supercordes La gravitation universelle introduite par Newton a été transformée par Einstein en la relativité générale, une théorie d'une grande beauté formelle et remarquablement prédictive pour l'ensemble des phénomènes cosmologiques. Mais il est connu depuis la naissance de la mécanique quantique que la relativité générale est incompatible avec celle-ci : quand on tente de la couler dans le moule de la théorie quantique des champs, en faisant du graviton le vecteur de la force de gravitation universelle, on s'aperçoit que les diagrammes de Feynman du type de la figure 3c où on remplace les photons par des gravitons sont irrémédiablement infinis : ceci est dû au fait que lorsqu'on somme sur toutes les énergies des états intermédiaires électron-positron possibles, les états d'énergie très grande finissent par donner une contribution arbitrairement grande, entraînant l'impossibilité de donner un sens à la gravitation quantique. La relativité générale doit être considérée comme une théorie effective seulement utilisable à basse énergie. Trouver une théorie cohérente qui reproduise la relativité générale à basse énergie s'est révélé un problème particulièrement coriace, et un premier ensemble de solutions possibles (ce qui ne veut pas dire que la réalité est parmi elles !) est apparu de manière totalement inattendue vers le milieu des années 1970 avec les théories de cordes. Dans cette construction, on généralise la notion de particule ponctuelle, élémentaire, qui nous avait guidés jusqu'à présent à celle d'un objet étendu, une corde très fine, ou plutôt un caoutchouc, qui se propage dans l'espace en vibrant. Un tel objet avait été introduit vers la fin des années soixante pour décrire certaines propriétés des collisions de protons et autres particules à interactions fortes. Il se trouve qu'il y a là un très joli problème de mécanique classique qu'Einstein lui-même aurait pu résoudre dès 1905, s'il s'était douté qu'il était soluble ! De même qu'une particule élémentaire ponctuelle, en se propageant en ligne droite à vitesse constante minimise la longueur de la courbe d'espace-temps qui est sa trajectoire, la description de la propagation et des modes de vibration d'une de ces cordes revient à minimiser la surface d'espace-temps qu'elle décrit (l'analogue d'une bulle de savon, qui est une surface minimale !), ce qui peut être effectué exactement. Le nom de corde leur a été donné par suite de l'exacte correspondance des modes de vibration de ces objets avec ceux d'une corde de piano. Quand on quantifie ces vibrations à la façon dont on quantifie tout autre système mécanique classique, chaque mode de vibration donne tout un ensemble de particules, et on sait calculer exactement les masses de ces particules. C'est là que les surprises commencent ! On découvre tout d'abord que la quantification n'est possible que si la dimension de l'espace-temps est non point quatre, mais 26 ou 10 ! Ceci n'est pas nécessairement un défaut rédhibitoire : les directions (encore inobservées ?) supplémentaires peuvent être de très petite dimension, et être donc encore passées inaperçues. On découvre simultanément que les particules les plus légères sont de masse nulle et que parmi elles il y a toujours un candidat ayant exactement les mêmes propriétés que le graviton à basse énergie. De plus, quand on donne la possibilité aux cordes de se couper ou, pour deux, de réarranger leur brins au cours d'une collision, on obtient une théorie dans laquelle on peut calculer des diagrammes de Feynman tout à fait analogue à ceux de la figure 3, où les lignes décrivent la propagation de cordes libres. Cette théorie présente la propriété d'être convergente, ce qui donne donc le premier exemple, et le seul connu jusqu'à présent, d'une théorie cohérente incluant la gravitation. Les modes d'excitation de la corde donnent un spectre de particules d'une grande richesse. La plupart sont très massives, et dans cette perspective d'unification avec la gravitation, inobservables pour toujours : si on voulait les produire dans un accélérateur construit avec les technologies actuelles, celui-ci devrait avoir la taille de la galaxie ! Seules celles de masse nulle, et leurs couplages entre elles, sont observables, et devraient inclure celles du tableau de la figure 1. Remarquons ici un étrange renversement par rapport au paradigme de l'introduction sur l'« élémentarité » des particules « élémentaires » : elles deviennent infiniment composées en quelque sorte, par tous les points de la corde, qui devient l'objet « élémentaire » ! Au cours de l'investigation de cette dynamique de la corde au début des années 1970, on a été amené à introduire une notion toute nouvelle, celle de supersymétrie, une symétrie qui relie les particules du genre quarks et leptons (fermions) de la figure 1 aux vecteurs de force. En effet, la corde la plus simple ne contient pas de fermion dans son spectre. Les fermions ont été obtenus en rajoutant des degrés de liberté supplémentaires, analogues à une infinité de petits moments magnétiques (spins) le long de la corde. La compatibilité avec la relativité restreinte a alors imposé l'introduction d'une symétrie entre les modes d'oscillation de ces spins et ceux de la position de la corde. Cette symétrie est d'un genre tout à fait nouveau : alors qu'une symétrie par rotation par exemple est caractérisée par les angles de la rotation, qui sont des nombres réels ordinaires, cette nouvelle symétrie fait intervenir des nombres aux propriétés de multiplication très différentes : deux de ces nombres, a et b disons, donnent un certain résultat dans la multiplication a×b, et le résultat opposé dans la multiplication b×a : a×b= b×a. On dit que de tels nombres sont anticommutants. À cause de cette propriété nouvelle, et de son effet inattendu d'unifier particules et forces, on a appelé cette symétrie supersymétrie, et supercordes les théories de cordes ayant cette (super)symétrie. A posteriori, l'introduction de tels nombres quand on parle de fermions est naturelle : les fermions (l'électron en est un), satisfont au principe d'exclusion de Pauli, qui est que la probabilité est nulle d'en trouver deux dans le même état. Or la probabilité d'événements composés indépendants est le produit des probabilités de chaque événement : tirer un double un par exemple avec deux dés a la probabilité 1/36, qui est le carré de 1/6. Si les probabilités (plus précisément les amplitudes de probabilité) pour les fermions sont des nombres anticommutants, alors, immédiatement, leurs carrés sont nuls, et le principe de Pauli est trivialement satisfait ! Les extraordinaires propriétés des théories des champs supersymétriques et des supercordes ont été une motivation puissante pour les mathématiciens d'étudier de façon exhaustive les structures faisant intervenir de tels nombres anticommutants. Un exemple où on voit des mathématiques pures sortir en quelque sorte du réel. De nombreux problèmes subsistent. En voici quelques uns : - L'extension et la forme des six dimensions excédentaires : quel degré d'arbitraire y a-t-il dedans (pour l'instant, il semble trop grand) ? Un principe dynamique à découvrir permet-il de répondre à cette question ? Ces dimensions excédentaires ont-elles des conséquences observables avec les techniques expérimentales actuelles ? - La limite de basse énergie des cordes ne contient que des particules de masse strictement nulle et personne ne sait comment incorporer les masses des particules de la figure 1 (ou la brisure de symétrie qui les engendre) sans détruire la plupart des agréables propriétés de cohérence interne de la théorie. Une des caractéristiques des supercordes est d'englober toutes les particules de masse nulle dans un seul et même multiplet de supersymétrie, toutes étant reliées entre elles par (super)symétrie. En particulier donc, quarks et leptons, ce qui signifie qu'il doit exister un vecteur de force faisant passer d'un quark à un lepton, et donc que le proton doit pouvoir se désintégrer en leptons (positron et neutrinos par exemple) comme la symétrie de la force électrofaible implique l'existence du boson W et la désintégration du neutron. Or, le proton est excessivement stable : on ne connaît expérimentalement qu'une limite inférieure, très élevée, pour sa durée de vie. La brisure de cette symétrie quark-lepton doit donc être très grande, bien supérieure à celle de la symétrie électrofaible. L'origine d'une telle hiérarchie de brisures des symétries, si elle existe, est totalement inconnue. - Doit-on s'attendre à ce qu'il faille d'abord placer les cordes dans un cadre plus vaste qui permettrait à la fois de mieux les comprendre et de répondre à certaines de ces questions ? Nul ne sait. En attendant, toutes les questions passionnantes et probablement solubles dans le cadre actuel n'ont pas encore été résolues. Entre autres, les cordes contiennent une réponse à la question de la nature de la singularité présente au centre d'un trou noir, objet dont personne ne doute vraiment de l'existence, en particulier au centre de nombreuses galaxies. Également quelle a été la nature de la singularité initiale au moment du Big Bang, là où la densité d'énergie était tellement grande qu'elle engendrait des fluctuations quantiques de l'espace, et donc où celui-ci, et le temps, n'avaient pas l'interprétation que nous leur donnons usuellement d'une simple arène (éventuellement dynamique) dans laquelle les autres phénomènes prennent place. Toutes ces questions contiennent des enjeux conceptuels suffisamment profonds sur notre compréhension ultime de la matière, de l'espace et du temps pour justifier l'intérêt des talents qui s'investissent dedans. Mais ces physiciens sont handicapés par l'absence de données expérimentales qui guideraient la recherche. Le mécanisme de va et vient expérience-théorie mentionné dans l'introduction ne fonctionne plus : le Modèle Standard rend trop bien compte des phénomènes observés et observables pour que l'on puisse espérer raisonnablement que l'expérience nous guide efficacement dans le proche avenir. Mais à part des surprises dans le domaine (comme par exemple la découverte expérimentale de la supersymétrie), peut-être des percées viendront de façon complètement imprévue d'autres domaines de la physique, ou des mathématiques. Ce ne serait pas la première fois. Quelle que soit la direction d'où viennent ces progrès, il y a fort à parier que notre vision de la particule élémentaire en sera une fois de plus bouleversée.
[1] Voir la 212e conférence de l’Université de tous les savoirs donnée par D. Treille.
VIDEO CANAL U LIEN |
|
|
|
|
|
|
La physique à la conquête de l’infiniment bref |
|
|
|
|
|
La physique à la conquête de l’infiniment bref
08.01.2024, par Sebastián Escalón
Mise à l’honneur par le prix Nobel 2023, la physique attoseconde s’attaque à une autre dimension de l’infiniment petit : le temps. À la clé, la possibilité de visualiser et contrôler la dynamique des électrons et des réactions chimiques entre atomes.
Le 3 octobre dernier, la physicienne Anne l’Huillier donnait son cours de physique à l’université de Lund, en Suède. À la pause, elle ralluma son portable pour voir si elle avait reçu de nouveaux messages. C’est alors qu’elle apprît la nouvelle : elle venait d’obtenir le prix Nobel de physique conjointement avec le Français Pierre Agostini et l’Austro-Hongrois Ferenc Krausz. Elle était la cinquième femme à recevoir cette distinction, la seconde française après Marie Curie. Mais avant de se laisser emporter par l’émotion, Anne l’Huillier avait quelque chose à terminer : son cours. Ce qu’elle fit, en s’excusant auprès de ses étudiants de ce qu’elle terminerait un peu plus tôt que d’habitude.
Avec ce Nobel, l’Académie royale des sciences de Suède récompensait les méthodes expérimentales ayant permis la production d’impulsions de lumière d’une durée de l’ordre de l’attoseconde, soit un milliardième de milliardième de seconde. Comme aiment le rappeler les chercheurs, il y a autant d’attosecondes dans une seconde que de secondes depuis le Big Bang. Ces impulsions ont ouvert un nouveau champ de recherche : pour la première fois, les scientifiques disposaient d’un outil pour explorer des phénomènes ultrarapides, et en particulier la dynamique des électrons.
« Quand vous regardez la matière, c’est le cortège électronique qui détermine la position des atomes, explique Valérie Blanchet, physicienne au Centre lasers intenses et applications1 (Celia). La structuration de la matière, ce sont les électrons qui la déterminent. » D’où l’immense intérêt de se focaliser sur ces minuscules particules chargées négativement. La physique attoseconde apporte la dimension « temps » aux sciences de l’infiniment petit : ce n’est pas seulement l’état initial et l’état final d’un système qu’elle permet d’observer, mais aussi la transition de l’un à l’autre. Et ce n’est pas tout : les impulsions attosecondes permettent aussi de contrôler la dynamique des électrons dans la matière. Porté pendant trente ans par un groupe réduit d’opticiens et de physiciens, le domaine « atto » intéresse désormais de nombreux autres champs scientifiques, de la chimie à la médecine en passant par la biologie. Il est d'ailleurs aujourd'huiau coeur du programme et équipements prioritaire de recherche (PEPR) exploratoire LUMA – piloté par le CNRS et le CEA – qui vise à comprendre, façonner et exploiter la lumière pour contrôler des systèmes physico-chimiques et biologiques et ouvrir la voie à de nouvelles technologies vertes.
Mystérieuses harmonies
Tout a commencé en 1988, lorsqu’une jeune physicienne récemment embauchée par le Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Anne l’Huillier, braque un laser sur des atomes d’argon. L’équipe dont elle fait partie détient une réputation mondiale dans l’étude des interactions lumière-matière. Mais cette fois-ci, au lieu de regarder l’effet de la lumière sur les atomes, elle décide de regarder les photons issus de cette interaction. « C’était de la pure curiosité d’expérimentatrice. Aucun théoricien ne lui avait suggéré de regarder cela », explique Philippe Balcou, directeur de recherche au Celia, qui, un an après cette expérience, est devenu le premier étudiant en thèse d’Anne l’Huillier. La physicienne observe alors quelque chose d’inattendu : le laser induit l’émission de faisceaux de photons ultraviolets, dont les fréquences sont des multiples de celle du laser, appelées harmoniques. Mais leur présence était alors inexplicable, d’autant plus que l’intensité de ces harmoniques, au lieu de retomber rapidement, atteint un plateau qui se prolonge dans l’extrême ultraviolet et même au-delà. Anne l’Huillier décide dès lors de se consacrer à l’étude de ce phénomène.
« Au début, personne ne comprenait rien à ces harmoniques », admet Richard Taïeb, chercheur au Laboratoire de chimie physique - matière et rayonnement2, qui fut l’un des premiers théoriciens à travailler avec Anne l’Huillier. Il faudra d’ailleurs attendre cinq ans pour que des chercheurs en expliquent l’origine. Lorsque les électrons sont excités par le laser et « arrachés » de l’atome (qui est ainsi ionisé), ils s’échappent de leur cœur. Mais lorsque la phase de la lumière laser s’inverse, l’électron est brusquement ramené vers le noyau atomique ionisé, et peut alors se recombiner avec ce dernier. Pour se débarrasser du surplus d’énergie qu’il a accumulé lors de son excitation par le laser, il émet un photon ultraviolet. Très vite, ces harmoniques suscitent l’intérêt des expérimentateurs et des théoriciens. « L’une des motivations pour les étudier, c’était d’avoir une source de lumière cohérente dans l’UV extrême », se souvient Richard Taieb. En effet, ces faisceaux ne partent pas dans tous les sens : ils sont émis exactement dans la direction du laser. « On avait là une sorte de synchrotron de poche », s’amuse Philippe Balcou.
Les impulsions attosecondes permettent de contrôler la dynamique des électrons dans la matière
Au milieu des années 1990, les physiciens comprennent que les harmoniques sont en phase. À intervalles réguliers, toutes les fréquences s’additionnent et forment une impulsion extrêmement brève. Il ne reste plus qu’à trouver le moyen de mesurer sa durée.
C’est Pierre Agostini, inspiré par les travaux des théoriciens Richard Taïeb, Valérie Véniard et Alfred Maquet qui détermine pour la première fois la durée d’une impulsion : 250 attosecondes. Nous sommes alors en 2001, la physique « atto » vient de naître. Les deux décennies suivantes ont vu l’apparition de lasers plus performants. « Lorsqu’on faisait les premières caractérisations des harmoniques, au début des années 1990, nous disposions d’un laser qui tirait un coup par minute, rappelle Philippe Balcou. Aujourd’hui ils tirent plus de 10 000 fois par seconde. » D’autant que l’amélioration des lasers s’est conjuguée à une meilleure maîtrise de la génération d’impulsions attosecondes. L’heure était désormais à l’exploitation de ce formidable outil.
Libérer l’électron
L’un des exploits les plus remarquables de la science attoseconde a été l’observation de l’effet photoélectrique. Décrit par Einstein en 1905, il consiste en l’éjection d’un électron au moment où un atome absorbe un photon d’une énergie particulière. En 2010, Ferenc Krausz montre que cette éjection n’est pas immédiate : l’électron met une poignée d’attosecondes à s’échapper de l’emprise du noyau atomique. Ce temps d’éjection varie aussi en fonction des caractéristiques de l’électron excité. Qu’est-ce qui retarde ces électrons ? Qu’est-ce qui distingue les différents électrons d’un atome ? Comment ceux-ci s’influencent-ils les uns les autres ? Les chercheurs ont enfin les outils expérimentaux et théoriques pour aborder ces questions. « Grâce aux impulsions attosecondes, on peut commencer à explorer les interactions entre les électrons, ce que l’on appelle aussi corrélation électronique, de façon résolue dans le temps », explique Valérie Blanchet.
Séquence d'un film en 3D de la photoémission d’un atome d’hélium, montrant son évolution lorsqu'il cède un électron sous l'effet de la lumière. La scène dure 30 millionièmes de milliardième de seconde et a été filmée pour la première fois grâce à un laser à impulsions ultrabrèves.
Ces interactions entre électrons conditionnent les interactions des atomes entre eux, notamment lors des réactions chimiques. Celles-ci commencent toujours par un réarrangement électronique : le mouvement des noyaux ne survient que bien plus tard. « Ce qui me plaît dans la physique attoseconde, c’est qu’on se situe aux premiers instants des phénomènes », affirme Lou Barreau, chercheuse à l’Institut des sciences moléculaires d'Orsay3. Lors de ses expériences, elle utilise des impulsions attosecondes pour ioniser différentes molécules. « J’essaie de comprendre l’influence du milieu sur l’éjection des électrons. Est-ce que la présence d’un groupe méthyle ou d’un cycle aromatique influence le temps d’ionisation, par exemple. »
En se plaçant en amont de la chimie, les chercheurs voudraient contrôler, grâce aux impulsions attosecondes, le déroulement des réactions chimiques. Prenons une molécule que l’on voudrait casser à un endroit bien précis afin d’obtenir un certain produit. « L’idée est d’exciter des électrons dans une molécule pour créer une onde électronique. Cette onde se propagerait le long de la molécule et affaiblirait certaines liaisons atomiques », explique Lou Barreau. Les impulsions attosecondes serviraient ainsi à « graver » sur la molécule des lignes de découpe avant la réaction chimique afin d’obtenir les produits escomptés. Cependant, beaucoup de travail sera nécessaire avant de mettre à profit ces nouvelles possibilités. « Il y a déjà des preuves de principe sur des acides aminés, mais il s’agit pour l’instant d’ions. On n’arrive pas encore à le faire sur des molécules neutres », tempère Lou Barreau.
Un type de molécule bien particulier a beaucoup intéressé les chercheurs des sciences attosecondes. Il s’agit des molécules chirales. Chaque molécule chirale a deux versions, deux énantiomères, qui, comme nos deux mains, sont parfaitement identiques si ce n’est qu’elles sont l’image dans un miroir l’une de l’autre. Depuis le XIXe siècle, on sait que ces molécules énantiomères ont la propriété de modifier dans deux sens opposés la polarisation d’une lumière polarisée. C’est ce qu’on appelle l’activité optique. L’équipe HXUV du Celia a ionisé des molécules chirales et montré que le temps que mettent les électrons à s’échapper de la molécule et leur direction d’éjection dépendent du sens de polarisation de la lumière ainsi que de l’énantiomère.
L’inexorable expansion du domaine attoseconde
L’autre intérêt de la physique attoseconde est son utilité pour d’autres disciplines. « Avec les progrès de la physique attoseconde, on peut maintenant étudier des objets plus complexes qui nous connectent à d’autres domaines », explique Franck Lépine, chercheur à l'Institut lumière matière4. Parmi ces domaines, l’astrophysique. « Les molécules de milieux interstellaires réagissent aux rayonnements ionisants présents dans l’espace », précise le chercheur. Afin de mieux comprendre la relation entre la chimie interstellaire et le rayonnement ionisant, son équipe a utilisé des impulsions attosecondes dans l’extrême ultraviolet pour étudier la stabilité de molécules carbonées, prémices de l’apparition de la vie dans l’Univers.
Les méthodes attoseconde lui permettent aussi d’étudier l’ADN et les protéines. « On s’intéresse aux dommages que produisent les rayonnements énergétiques sur la matière vivante. Comprendre les premiers instants de ces processus pourrait permettre d’imaginer de nouvelles façons de nous protéger de ce rayonnement », précise Franck Lépine, qui développe en collaboration avec Ferenc Krausz une nouvelle méthode de diagnostic médical précoce. « Grâce à des impulsions attosecondes à large spectre, on peut détecter la présence infime de certaines molécules signatures de cancer dans des fluides biologiques et ainsi prédire très en amont l’apparition de la maladie », explique le physicien.
Éric Le Roux / Université Lyon 1
Partager
Les chercheurs pensent qu’il faudra encore plusieurs années avant que l’attoseconde entre dans la vie de tous les jours. « Je compare le domaine attoseconde à celui des lasers. Le concept de laser a été posé au début du XXe siècle. Il a ensuite fallu cinquante ans pour construire le premier laser, puis trente ans de plus pour qu’il révolutionne notre vie au quotidien avec la lecture de code barre, le CD ou la chirurgie laser », relève Fabrice Catoire, théoricien des cohérences à l’échelle attoseconde au Celia. Mais même si l’attoseconde tarde à entrer dans la vie quotidienne, il est fort probable qu’elle entrera rapidement dans la boîte à outils des scientifiques. « Il suffit de voir l’évolution du domaine femtoseconde ou picoseconde depuis les années 1980 et 1990, observe Franck Lépine. À partir de choses très fondamentales, on est passé à des applications dans l’industrie, la chirurgie, la spectrométrie ultrarapide. On parle de femtochimie ou femtomagnétisme. Pour l’atto, on en est aux preuves de concept, mais peu à peu on va essaimer vers d’autres domaines. » Patience donc : les avancées scientifiques ne se font pas en quelques attosecondes. ♦
-----------------------------------------------------------
Laserix et l’exception française
La série de Nobels de physique français de ces dernières années (Gérard Mourou, Alain Aspect, Pierre Agostini, Anne L’Huillier) ne doit rien au hasard. Leur carrière se caractérise par une utilisation intensive de lasers. Or, depuis les années 1960, la France se distingue par sa grande maîtrise de cet instrument. Il existe une exception française en matière de lasers, faite de techniciens, ingénieurs et chercheurs au top, de plateformes d’excellence et d’entreprises leaders mondiales du secteur telles que Thales et Amplitude.
Laserix, la plateforme laser de l’université Paris-Saclay, fait partie de cette success story. Depuis 2003, Laserix offre aux chercheurs de diverses disciplines, sur le modèle de la résidence d’artiste, des sources lasers femtosecondes d’une exceptionnelle qualité. Sa spécialité est la génération d’impulsions dans les très courtes longueurs d’onde, l’UV extrême, et « fournit une source 10 à 100 fois plus énergétique que les sources harmoniques à ces longueurs d’onde », affirme Sophie Kazamias, directrice scientifique de la plateforme depuis 2015.
Parmi les recherches menées grâce à Laserix, il y a l’accélération laser-plasma. Cette technique permet d’accélérer des électrons, avec des champs accélérateurs 1 000 fois supérieurs à ceux des accélérateurs actuels, jusqu’à des vitesses proches de celle de la lumière. À cette vitesse, des phénomènes relativistes se manifestent, comme une augmentation notable de la masse des particules. Ce domaine est sans doute parmi les plus « chauds » de la physique. « Un jour, l’accélération laser-plasma sera l’objet d’un Nobel. Et parmi le groupe de scientifiques récompensés, il y aura sans doute un Français », prédit Sophie Kazamias. ♦
DOCUMENT CNRS LIEN
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] - Suivante |
|
|
|
|
|
|