ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

ChroMS, le cerveau comme il n’avait jamais été vu

 

 

 

 

 

 

 

ChroMS, le cerveau comme il n’avait jamais été vu

COMMUNIQUÉ | 10 AVRIL 2019 - 11H35 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


Mise au point par des chercheurs de l’École polytechnique, de Sorbonne Université, de l’Inserm et du CNRS regroupés au sein du Laboratoire d’optique et biosciences1 et de l’Institut de la Vision2, ChroMS est une nouvelle technique de microscopie associant couleur, 3D et haute résolution, introduisant une véritable révolution dans l’imagerie du cerveau des vertébrés. L’approche ChroMS est décrite en détail dans un article qui vient de paraitre dans Nature Communications.

En matière d’imagerie du cerveau des vertébrés, l’écueil que rencontraient jusqu’à présent les chercheurs était de devoir choisir entre résolution et volume. Soit on obtenait de la très haute résolution avec la microscopie électronique tridimensionnelle, mais sur un volume beaucoup trop faible pour retracer un circuit neuronal complet, soit on obtenait une image entière du cerveau, mais cette fois à une résolution bien trop large pour saisir les détails.

Le principal bénéfice de l’approche d’imagerie ChroMS (pour Chromatic Multiphoton Serial imaging), c’est d’offrir une véritable visite virtuelle à haute résolution (à l’échelle de la cellule) de certaines parties du cerveau essentielles pour comprendre le développement des circuits neuronaux. Si la visite est virtuelle, les données sont bien réelles, issues de cerveaux de souris transgéniques dans les neurones desquelles ont été introduits des marqueurs fluorescents issus de méduses ou de coraux, qui, une fois stimulés par un laser infrarouge, permettent d’obtenir la couleur.

« L’instrument est idéal pour reconstruire en 3D avec une très grande précision des régions du cerveau, de quelques millimètres-cubes de volume, ce qui est une première avec cette qualité d’images, et qui constitue l’échelle pertinente par rapport à ce que nous voulons observer » explique Emmanuel Beaurepaire, du Laboratoire d’optique et biosciences (LOB – École polytechnique, CNRS, Inserm). « Nous pouvons aussi reconstituer un cerveau entier de souris, avec une moindre précision dans la version actuelle de notre instrument ».
« Nous nous intéressons plus particulièrement au lignage cellulaire » précise Jean Livet, de l’Institut de la vision (Sorbonne Université, Inserm, CNRS), « c’est-à-dire la façon dont se développe le cerveau à partir de cellules souches neurales : quelles sont les cellules filles issues d’une cellule souche donnée, comment une mutation de la cellule souche a pu influer sur leur développement, comment les groupes de cellules générées par différentes cellules souches s’agencent les uns par rapport aux autres, c’est toute cette histoire d’une région du cerveau, codée dans la couleur, que nous révèlent les images grand volume de ChroMS ».
En ligne de mire, la capacité de répondre à des questions qui se posent depuis longtemps en neurosciences, comme celle de savoir si les neurones issus d’une même cellule souche se connectent de façon préférentielle entre eux pour remplir une fonctionnalité donnée, ou si des pathologies comme l’épilepsie peuvent être reliées à des problèmes localisés affectant certaines cellules souches neurales.

Si la technique ChroMS est particulièrement adaptée à l’étude d’un organe aussi complexe que le cerveau, elle peut être mise à profit sur tous les organes et devrait s’avérer être un outil très efficace pour les études portant sur l’embryogénèse.

 

   DOCUMENT        inserm        LIEN

 
 
 
 

Troubles du spectre de l'autisme : une étude d’imagerie cérébrale inédite semble remettre en cause le modèle théorique dominant

 

 

 

 

 

 

 

Troubles du spectre de l'autisme : une étude d’imagerie cérébrale inédite semble remettre en cause le modèle théorique dominant


Dans le cadre du programme scientifique InFoR-Autism*, soutenu par l’Institut Roche, une étude de neuroimagerie IRM s’est intéressée aux liens entre la connectivité anatomique locale et la cognition sociale chez des personnes présentant des troubles du spectre de l’autisme (TSA). Fruits de la collaboration entre la Fondation FondaMental, des chercheurs de l’Inserm, NeuroSpin (CEA Paris-Saclay) et les Hôpitaux universitaires Henri Mondor, AP-HP, les résultats semblent remettre en question le modèle théorique dominant selon lequel les TSA proviendraient d'un déficit de connexions « longue-distance » entre des neurones situés d'un bout à l'autre du cerveau, associé à une augmentation de la connectivité neuronale à « courte distance », entre des zones cérébrales adjacentes. Publiés dans Brain, ces travaux pourraient, s’ils étaient confirmés à plus large échelle, ouvrir la voie à l’exploration de nouvelles approches thérapeutiques.
       
Les troubles du spectre de l’autisme (TSA) sont des troubles du neuro-développement qui se caractérisent par des troubles de la communication, une altération des interactions sociales et des anomalies sensorielles et comportementales. Les travaux menés en génétique et en imagerie cérébrale suggèrent que des anomalies du développement du cerveau, concernant notamment la formation des réseaux neuronaux et le fonctionnement des synapses, pourraient participer à la survenue des TSA.

Ces dernières années, des travaux de neuroimagerie ont mis en évidence, chez des personnes présentant des TSA, des anomalies du fonctionnement de certaines aires cérébrales que l’on sait responsables du traitement des émotions, du langage ou encore des compétences sociales. Des travaux sur la connectivité cérébrale des personnes avec TSA ont notamment mis en évidence un déficit de connexions « longue distance » contrastant avec une augmentation de la connectivité « courte distance ». Ces résultats ont servi de base à l’élaboration d’un modèle théorique de compréhension des TSA, selon lequel le défaut d’attention sociale et de traitement de l’information observé (difficulté à appréhender une situation dans son ensemble, attention portée à certains détails) s’explique par une saturation d’informations traitées par le cerveau, liée à l’augmentation de la connectivité neuronale entre des zones cérébrales adjacentes.

Pour autant, le Pr Josselin Houenou, professeur de psychiatrie à l’UPEC, chercheur au sein de l’Inserm, praticien aux Hôpitaux universitaires Henri Mondor, AP-HP et dernier auteur de l’étude publiée dans Brain, précise : « ce modèle repose sur l’étude de populations pédiatriques hétérogènes, comprenant des enfants autistes d’âges variables et à la symptomatologie très variée, et sur des méthodes de neuroimagerie peu spécifiques ne permettant pas de mesurer avec fiabilité la connectivité ‘’courte distance’’. »

Afin de tester le modèle actuel, les auteurs de cette étude ont utilisé une innovation conçue par Miguel Guevara, Jean-François Mangin et Cyril Poupon à NeuroSpin, à savoir un atlas spécifiquement dédié à l’analyse par tractographie de 63 connexions « courte distance » à partir d’images obtenues par IRM de diffusion (IRMd). L’IRMd permet de mettre en évidence in vivo les faisceaux de matière blanche du cerveau en mesurant la diffusion des molécules d'eau, notamment le long des axones. Il est alors possible par tractographie de reconstituer de proche en proche les trajets des faisceaux de fibres nerveuses représentés sous la forme d'un tractogramme.

*         La Fondation FondaMental, l’Inserm, Inserm Transfert et l’Institut Roche sont partenaires depuis fin 2012 dans le cadre du programme scientifique InFoR Autism, dont l’objectif est de réaliser un suivi des variables cliniques, biologiques et d’imagerie cérébrale afin d’étudier la stabilité et l’évolution des TSA. Au total, 117 patient·e·s et 57 volontaires sain·e·s, âgé·e·s de 6 à 56 ans, ont été inclus dans l’étude. Il s’agit de l’une des cohortes proposant l’une des bases de données (cliniques, biologiques, eye tracking, et imagerie) les plus riches par patient et témoin.
Les auteurs ont pu ainsi étudier les liens entre la connectivité « courte distance » et la cognition sociale chez une population adulte homogène de personnes présentant des TSA, issues de la cohorte InFoR-Autism* (27 personnes présentant des TSA sans déficience intellectuelle et 31 personnes contrôle), cohorte offrant l’une des bases de données les plus riches par patient et par témoin.

« La puissance de la cohorte InFoR-Autism* réside dans la grande richesse des données recueillies pour chaque sujet inclus. Nous avons pu ainsi mettre en lien les résultats de neuroimagerie obtenus avec les scores de cognition sociale, mesurant l’habileté sociale, l’empathie, la motivation sociale, etc.) », rappelle le Dr Marc-Antoine d’Albis, Hôpital Henri Mondor, Inserm U955, premier auteur de l’étude.

Découverte d’un déficit de la connectivité cérébrale « courte distance » associé à un déficit d’interaction sociale et d’empathie
Les résultats obtenus montrent que les sujets souffrant de TSA présentent une diminution de la connectivité dans 13 faisceaux « courte distance », en comparaison avec les sujets contrôles. De plus, cette anomalie de la connectivité des faisceaux « courte distance » est corrélée au déficit de deux dimensions de la cognition sociale (à savoir, les interactions sociales et l’empathie) chez les sujets présentant des TSA.

Ces résultats préliminaires sont bel et bien en opposition avec le modèle théorique actuel selon lequel le défaut d’attention sociale et de traitement de l’information chez les personnes présentant des TSA s’explique par une augmentation de la connectivité neuronale entre des zones cérébrales adjacentes. Ils nécessitent maintenant d’être confirmés par des études menées chez des enfants présentant des TSA ainsi que l’explique le Pr Josselin Houenou.

Pour le Pr Josselin Houenou, « ces résultats sont préliminaires mais ils suggèrent que ces anomalies de la connectivité ‘’courte distance’’ pourraient être impliquées dans certains déficits de la cognition sociale présents chez les sujets autistes. Il est maintenant nécessaire de conduire des études similaires chez des enfants afin de confirmer les résultats obtenus chez les adultes. Les cohortes pédiatriques permettent des études chez des enfants d’âges - et donc de maturations cérébrales - variés et cela implique de prendre en compte une population de sujets bien plus importante.
Si ces premières conclusions étaient confortées, cela permettrait d’envisager le développement de nouvelles approches thérapeutiques pour les déficits de la cognition sociale. Par exemple, la stimulation magnétique transcrânienne pourrait être explorée car la connectivité cérébrale entre des zones adjacentes est localisée en superficie du cerveau. »



Références
* BRAIN-2018-00985. Local structural connectivity is associated with social cognitive deficits in ASD. d'Albis & al

 

DOCUMENT     cea         LIEN
 

 
 
 
 

Un nouvel espoir dans la lutte contre la douleur causée par des lésions nerveuses

 

 

 

 

 

 

 

Un nouvel espoir dans la lutte contre la douleur causée par des lésions nerveuses

COMMUNIQUÉ | 06 JUIL. 2020 - 15H48 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE

Des chercheurs du laboratoire Neuro-Dol (Université Clermont Auvergne et Inserm) viennent d’identifier deux pistes pharmacologiques qui pourraient ouvrir la voie à une nouvelle prise en charge de la douleur causée par des lésions nerveuses (douleur neuropathique). Une perspective encourageante quand 7 à 10% de la population est atteinte, sans réelle thérapeutique médicamenteuse efficace. Ces travaux ont fait l’objet d’une publication le 5 juin 2020 dans la revue Progress in Neurobiology.
La prise en charge de la douleur chronique: un exercice périlleux

Les douleurs chroniques, c’est-à-dire continues ou récurrentes, sont un réel problème de santé publique dont la prévalence est importante et la prise en charge difficile. Parmi celles-ci, les douleurs neuropathiques affectent entre 7 et 10% de la population française et les thérapeutiques médicamenteuses disponibles sont insatisfaisantes avec au mieux un patient sur trois partiellement soulagé.
Cette situation aurait par ailleurs pu conduire à des prescriptions/consommations excessives d’antidouleurs (on pensera par exemple à la crise des opioïdes aux Etats-Unis). Les patients douloureux et leurs médecins attendent donc des propositions thérapeutiques innovantes.
A l’origine de la douleur neuropathique: un récepteur à la surface des cellules nerveuses
C’est donc pour développer de nouvelles pistes de traitement que des chercheurs du laboratoire Neuro-Dol (Université Clermont Auvergne UCA et Inserm), soutenus par le challenge « mobilité personnalisée, facteur-clé de la santé » de l’I-Site CAP 20-25 porté par l’UCA, et l’Agence Nationale de la Recherche, en collaboration avec des chercheurs de l’Institut de Génomique Fonctionnelle de Montpellier, du département de Chimie Médicinale de Cracovie et de l’Institut des Biomolécules Max Mousseron de Montpellier, se sont intéressés à un neurotransmetteur particulier, la sérotonine, impliqué dans de nombreuses fonctions (régulation de l’appétit, sommeil, humeur, …) et dans la modulation de la douleur. Ils ont mis en évidence que l’activité spontanée du récepteur 5-HT6 de la sérotonine, présent sur des neurones de la moelle épinière facilitant la transmission du message douloureux, participait aux douleurs neuropathiques.

Un responsable, deux solutions potentielles pour soulager les patients
Une fois démontrée l’activité spontanée du récepteur 5-HT6, les chercheurs ont mis au point et breveté un nouveau composé bloquant cette activité. Ce dernier, le PZ-1388, présente chez l’animal un effet antidouleur rapide et prolongé sur différents symptômes douloureux induits par le toucher ou le froid.

L’amélioration de ces symptômes est accompagnée d’une amélioration des déficits cognitifs, troubles fréquemment associés à ce type de douleur.

Les chercheurs ont également voulu comprendre les mécanismes cellulaires intimes mis en jeu par le récepteur 5-HT6. Ils ont montré pour la première fois que l’activité spontanée du récepteur entraînait, dans ce contexte pathologique, l’activation d’une autre protéine à l’intérieur du neurone appelée mTOR. Comme suspecté, l’utilisation d’un « leurre » empêchant l’interaction physique entre le récepteur et mTOR a également réduit les symptômes douloureux.
Ainsi, les résultats obtenus dans ce travail collaboratif proposent non pas un, mais deux nouveaux concepts pharmacologiques susceptibles de devenir des stratégies thérapeutiques originales dans le traitement des douleurs chroniques neuropathiques.
 

Pour en savoir plus:
Neuro-Dol : http://neurodol.uca.fr/
CAP 20-25 : https://cap2025.fr/
Le projet I-Site CAP 20-25 fait partie des 18 initiatives d’excellence reconnues au national par le label IDEX/I-Site du programme d’investissements d’avenir, sélectionnées parmi des dizaines de candidatures déposées par les acteurs de l’enseignement supérieur et de la recherche en France. Il est porté par l’Université Clermont Auvergne et un consortium de 20 partenaires issus de l’enseignement supérieur et de la recherche, des collectivités, entreprises et établissements de soin.

 

DOCUMENT        inserm        LIEN

 
 
 
 

Des macaques retrouvent le contrôle d’un membre paralysé

 

 

 

 

 

 

 

Des macaques retrouvent le contrôle d’un membre paralysé

COMMUNIQUÉ | 09 NOV. 2016 - 19H05 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


Des primates non-humains ont retrouvé le contrôle d’un membre inférieur paralysé suite à une lésion de la moelle épinière. Cette avancée a été rendue possible grâce à une interface cerveau-moelle épinière (dite « neuroprothèse »). Ce système agit comme un pont sans fil entre le cerveau et les centres de la marche situés dans la moelle épinière, court-circuitant ainsi la lésion. Cette neuroprothèse a été développée par un consortium international mené par l’École Polytechnique de Lausanne (EPFL) au sein duquel l’Institut des maladies neurodégénératives (CNRS/Université de Bordeaux) sous la direction d’Erwan Bezard, directeur de recherche Inserm a mené la validation expérimentale chez l’animal. Les résultats sont publiés le 9 novembre 2016 dans la revue Nature. Un essai clinique a d’ores et déjà été initié à l’hôpital universitaire de Lausanne afin de tester les effets thérapeutiques de cette neuroprothèse chez des patients souffrant de lésions de la moelle épinière.
 
Le 23 juin 2015, un premier singe macaque porteur d’une lésion de la moelle épinière a pu retrouver le contrôle d’un membre inférieur paralysé, et donc remarcher, grâce à une neuroprothèse appelée « interface cerveau-machine » court-circuitant la lésion. Ce système est capable de restaurer la communication entre le cerveau (lieu de genèse des actions volontaires) et la région de la moelle épinière produisant les mouvements des membres inférieurs.

Comment ?
Cette interface cerveau-machine enregistre l’activité cérébrale liée à l’intention de marche, la décode, et transmet cette information à la moelle épinière sous la lésion. Cette transmission est assurée par des électrodes qui stimulent les réseaux nerveux activant les muscles des jambes pendant la locomotion naturelle. Ainsi, seuls les mouvements souhaités par le singe sont produits.
Cette neuroprothèse a été conçue à l’EPFL (Lausanne, Suisse) et techniquement développée par un groupe international composé de Medtronic (USA), l’Université Brown (USA) et le Fraunhofer ICT-IMM (Mayence, Allemagne). Elle a ensuite été testée chez le primate en collaboration avec l’Inserm, le CNRS, l’Université de Bordeaux et le Centre Hospitalier Universitaire de Lausanne (Suisse).
“C’est la première fois qu’une neuroprothèse restaure la marche chez le primate » déclare Grégoire Courtine, professeur à l’EPFL, qui conduit le consortium.
“Les deux singes ont été capables de remarcher immédiatement après la mise en fonction de la neuroprothèse. Aucun entrainement n’a été nécessaire » indique Erwan Bézard, directeur de recherches Inserm et directeur de l’Institut des maladies neurodégénératives (CNRS/Université de Bordeaux), qui a supervisé les expériences sur le primate menées dans son centre. “ Il faut toutefois conserver à l’esprit les nombreux challenges qu’il reste à relever. Même si les essais cliniques débutent, cela prendra quelques années avant que de telles approches soient disponibles en clinique pour l’Homme ».
 
L’interface cerveau-moelle épinière court-circuite la lésion, en temps réel et sans fil
Dans le système nerveux intact, le signal électrique produisant la marche est généré au niveau des neurones cérébraux du cortex moteur. Ces signaux sont aussitôt envoyés à la région lombaire de la moelle épinière. A ce niveau, des réseaux complexes de neurones prennent le relais et contrôlent l’activation des muscles des jambes responsables de la marche. Des faisceaux de fibres nerveuses provenant du cerveau fournissent l’information requise à ces neurones quant à l’intention (ou non) de marcher, leur permettant alors de s’activer pour la réalisation du comportement. Une stimulation électrique délivrée précisément est donc capable de moduler ces réseaux et de produite l’activation désirée des muscles des jambes.

L’interface cerveau-moelle épinière court-circuite la lésion, en temps réel et sans fil. La neuroprothèse décode l’activité du cortex moteur pour « comprendre » le désir de marche ou de quelque mouvement que ce soit et transmet cette information au stimulateur. Ce dernier active les électrodes situées sous la lésion à la surface de la moelle épinière pour permettre l’activation contrôlée des muscles des jambes, en fonction du réel souhait de l’animal.

Le Pr. Jocelyne Bloch, neurochirurgienne, du centre hospitalier universitaire de Lausanne (CHUV) conduit maintenant l’essai clinique qui permettra d’évaluer, chez l’Homme, le potentiel thérapeutique de cette technologie qui permettrait à des patients avec des lésions incomplètes de la moelle épinière de remarcher.
 
L’interface est composée d’un implant cérébral, d’un système d’enregistrement, d’un ordinateur, d’un stimulateur implantable et d’un implant spinal.
L’implant cérébral est une puce comparable à celles déjà utilisées chez l’Homme pour des recherches sur les interfaces cerveau-ordinateur, et placée chirurgicalement sur le cortex moteur.
Développé à l’Université Brown en collaboration avec les Drs Borton et Nurmikko, le système d’enregistrement est connecté à l’implant cérébral pour enregistrer l‘activité électrique et relayer celle-ci en temps réel et sans fil à un ordinateur.
L’ordinateur décode l’activité électrique cérébrale, grâce à des algorithmes spécifiquement développés pour détecter le souhait du singe d’effectuer tel ou tel mouvement en temps réel. Cette « intention » de se mouvoir est transformée en protocole de stimulation de la moelle épinière qui est transmis, là encore sans fil, au stimulateur spinal implantable.
Le stimulateur spinal implantable est du type de ceux communément utilisés pour la stimulation cérébrale profonde (exemples : maladie de Parkinson, tremblement essentiel). Tim Denison et son équipe (Medtronic Inc.) ont développé un nouveau petit logiciel incorporé dans le stimulateur pour recevoir les informations en temps réel. Le stimulateur spinal implantable reçoit le protocole de stimulation sans fil et délivre les instructions de stimulation via l’implant spinal.

L’implant spinal est composé de 16 électrodes préalablement placées chirurgicalement à des endroits précis sur la partie dorsale de la moelle épinière lombaire. Cet implant spinal active de manière synergique les groupes de muscles de la jambe paralysée, permettant la production des mouvements de flexion et d’extension nécessaires à la marche.

 

  DOCUMENT        inserm        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google