ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

DE L'ATOME AU CRISTAL : LES PROPRIÉTÉS ÉLECTRONIQUES DES MATÉRIAUX

 

 

 

 

 

 

 

DE L'ATOME AU CRISTAL : LES PROPRIÉTÉS ÉLECTRONIQUES DES MATÉRIAUX

Métaux, semi-conducteurs, ou même supraconducteurs transportant un courant électrique sans aucune résistance, les matériaux présentent une diversité de propriétés électroniques remarquable, mise à profit dans de nombreuses applications qui font partie de notre quotidien. La chimie de l'état solide, en explorant les très nombreuses combinaisons entre éléments pour élaborer des structures de plus en plus complexes, nous invite à un véritable jeu de construction avec la matière, source de nouvelles découvertes. En même temps, le développement de techniques permettant d'élaborer, de structurer, et de visualiser ces matériaux à l'échelle de l'atome, ouvre d'immenses perspectives. Des lois de la mécanique quantique qui régissent le comportement d'un électron, aux propriétés d'un matériau à l'échelle macroscopique, c'est une invitation au voyage au coeur des matériaux que propose cette conférence.

Transcription de la 580e conférence de l'Université de tous les savoirs prononcée le 23 juin 2005
De l'atome au cristal : Les propriétés électroniques de la matière
Par Antoine Georges
Les ordres de grandeur entre l'atome et le matériau :
1. Il existe entre l'atome et le matériau macroscopique un très grand nombre d'ordres de grandeur, d'échelles de longueur. Prenons l'exemple d'un lingot d'or : quelqu'un muni d'une loupe très puissante pourrait observer la structure de ce matériau à l'échelle de l'atome : il verrait des atomes d'or régulièrement disposés aux nSuds d'un réseau périodique. La distance entre deux de ces atomes est de l'ordre de l'Angstrom, soit 10-10m. Ainsi, dans un lingot cubique de un millimètre de côté, il y a 10 millions (107) d'atomes dans chaque direction soit 1021 atomes au total ! Les échelles spatiales comprises entre la dimension atomique et macroscopique couvrent donc 7 ordres de grandeur. Il s'agit alors de comprendre le fonctionnement d'un système composé de 1021 atomes dont les interactions sont régies par les lois de la mécanique quantique.

2. Malheureusement, une telle loupe n'existe évidemment pas. Cependant, il est possible de voir les atomes un par un grâce à des techniques très modernes, notamment celle du microscope électronique à effet tunnel. Il s'agit d'une sorte de « gramophone atomique », une pointe très fine se déplace le long d'une surface atomique et peut détecter d'infimes changements de relief par variation du courant tunnel (voir plus loin). Cette découverte a valu à ses inventeurs le prix Nobel de physique de 1986 à Gerd Karl Binnig et Heinrich Rohrer (Allemagne).

3. Nous pouvons ainsi visualiser les atomes mais aussi les manipuler un par un au point de pouvoir « dessiner » des caractères dont la taille ne dépasse pas quelques atomes ! (Le site Internet www.almaden.ibm.com/vis/stm/gallery.html offre de très belles images de microscopie à effet tunnel). Cette capacité signe la naissance du domaine des nanotechnologies où la matière est structurée à l'échelle atomique.
4. Les physiciens disposent d'autres « loupes » pour aller regarder la matière à l'échelle atomique. Parmi elles, le synchrotron est un grand anneau qui produit un rayonnement lumineux très énergétique et qui permet de sonder la structure des matériaux, des molécules ou des objets biologiques, de manière statique ou dynamique. Les applications de ce genre de loupe sont innombrables en physique des matériaux, chimie, biologie et même géologie (par pour l'étude des changements structuraux des matériaux soumis à de hautes pressions).
5. Il existe encore bien d'autres « loupes » comme par exemple la diffusion de neutrons, la spectroscopie de photo-émission, la résonance magnétique... Dans la diffusion de neutrons, un neutron pénètre un cristal pour sonder la structure magnétique du matériau étudié.
La grande diversité des matériaux :

6. Ces différentes techniques révèlent la diversité structurale des matériaux, qu'ils soient naturels ou artificiels. Le sel de cuisine, par exemple, a une structure cristalline très simple. En effet, il est composé d'atomes de sodium et de chlore régulièrement alternés. Il existe également des structures plus complexes, comme par exemple les nanotubes de carbone obtenus en repliant des feuilles de graphite sur elles-mêmes ou la célèbre molécule C60 en forme de ballon de football composée de 60 atomes de carbone (fullerènes)
7. Tous ces matériaux peuvent être soit présents à l'état naturel soit élaborés de manière artificielle. Cette élaboration peut être faite plan atomique par plan atomique en utilisant une technique appelée « épitaxie par jet moléculaire » dans laquelle un substrat est bombardé par des jets moléculaires. Les atomes diffusent pour former des couches monoatomiques. Cette technique permet alors de fabriquer des matériaux contrôlés avec une précision qui est celle de l'atome.

8. La diversité des matériaux se traduit donc pas une grande diversité des structures, mais aussi de leurs propriétés électroniques. Par exemple, la résistivité (c'est-à-dire la capacité d'un matériau à s'opposer au passage d'un courant : R=U/I) varie sur 24 ordres de grandeurs entre de très bons conducteurs et un très bon isolant, ce qui est encore bien plus que les 7 ordres de grandeurs des dimensions spatiales. Il existe donc des métaux (qui sont parfois de très bons conducteurs), des isolants (de très mauvais conducteurs), des semi-conducteurs et même des supraconducteurs. Ces derniers sont des métaux, qui en dessous d'une certaine température, n'exercent aucune forme de résistance et ne dissipent aucune énergie. D'autres matériaux encore voient leur gradient thermique évoluer en fonction du courant qui les traverse, ceci permet par exemple de fabriquer du « froid » avec de l'électricité ou fabriquer de l'électricité avec de la chaleur, ce sont des thermoélectriques. Enfin, la résistivité de certains matériaux est fonction du champ magnétique dans lequel ils sont placés.

9. Ces diversités, autant structurales qu'électroniques, sont et seront de plus en plus mises à profit dans d'innombrables applications. Nous pouvons citer parmi elles, le transistor, le circuit intégré, le lecteur CD, l'imagerie par résonance magnétique etc. Derrière ces applications pratiques, il y a des problèmes de physique et de chimie fondamentales, et pour parfaitement comprendre l'origine de cette diversité, il faut remonter aux lois de la mécanique quantique. Il s'agit donc de jeter un pont entre l'échelle macroscopique et le monde quantique, à travers ces fameux 7 ordres de grandeurs. Particulièrement dans ce domaine, les sciences théoriques et expérimentales interagissent énormément. Nous allons donc partir de l'échelle atomique pour essayer de comprendre le comportement macroscopique d'un matériau.
De l'atome au matériau :
10. Commençons donc par la structure atomique. Un atome est composé d'un noyau, autour duquel gravitent des électrons. L'électron est environ 2000 fois plus léger que les protons et neutrons, constituants de base du noyau. La taille de cet ensemble est d'environ 10-10m (un Angstrom).
11. Le système {noyau+électron} semble comparable au système {Terre+soleil}, dans ce cas, l'électron tournerait sur une orbite bien régulière autour du noyau. Il n'en n'est rien. Même si les physiciens ont, pour un temps, cru au modèle planétaire de l'atome, nous savons depuis les débuts de la mécanique quantique que le mouvement de l'électron est bien différent de celui d'une planète !

12. La première différence notable est que l'électron ne suit pas une trajectoire unique. En fait, nous ne pouvons trouver l'électron qu'avec une certaine probabilité dans une région de l'espace. Cette région est appelée orbitale atomique. La forme de ce nuage de probabilités dépend de l'énergie de l'électron et de son moment cinétique. Si cette région est sphérique, on parle d'orbitale « s », (cas de l'atome d'hydrogène où seul un électron tourne autour du noyau). On parle d'orbitale « p » lorsque le nuage de probabilités est en forme de 8, (atome d'oxygène). Enfin, lorsque ce nuage prend une forme de trèfle à quatre feuilles, on parle d'orbitale « d » (atome de fer). Ainsi, il n'existe pas de trajectoires à l'échelle quantique, mais uniquement des probabilités de présence.

13. De plus, l'énergie d'un électron ne peut prendre que certaines valeurs bien déterminées, l'énergie est quantifiée (origine du terme quantique). La localisation de ces différents niveaux d'énergies et la transition entre ces niveaux par émission ou par absorption a été à l'origine de la mécanique quantique. Ces travaux ont valu à Niels Bohr le prix Nobel de physique de 1922. L'état d'énergie le plus bas est appelé état fondamental de l'atome. Il est par ailleurs possible d'exciter l'électron (avec de la lumière, par exemple) vers des niveaux d'énergie de plus en plus élevés. Ceci est connu grâce aux spectres d'émission et d'absorption de l'atome, qui reflètent les différents niveaux d'énergie possibles.
14. La troisième particularité du mouvement de l'électron est son Spin, celui-ci peut être représenté par une représentation imagée : l'électron peut tourner sur lui-même vers la gauche ou vers la droite, en plus de sa rotation autour du noyau. On parle de moment cinétique intrinsèque ou de deux états de Spin possibles. Pauli, physicien autrichien du XXéme siècle, formula le principe d'exclusion, à savoir qu'un même état d'énergie ne peut être occupé par plus de deux électrons de Spin opposé. Nous verrons plus loin qu'il est impossible de connaître l'état macroscopique d'un matériau sans tenir compte du principe d'exclusion de Pauli. Pour l'atome d'hélium par exemple, la première (et seule) couche contient deux atomes et deux seulement, il serait impossible de rajouter un atome dans cette couche, elle est dite complète.
15. On peut considérer grâce à ces trois principes (description probabiliste, niveaux d'énergies quantifiés et principe d'exclusion) que l'on remplit les couches électroniques d'un atome avec les électrons qui le constituent. Les éléments purs, dans la nature, s'organisent alors de manière périodique, selon la classification de Mendeleïev. Cette classification a été postulée de manière empirique bien avant le début de la mécanique quantique, mais cette organisation reflète le remplissage des couches atomiques, en respectant le principe d'exclusion de Pauli.

16. Un autre aspect du monde quantique est l'effet tunnel. Dans le microscope du même nom, cet effet est mis à profit pour mesurer une variation de relief. L'effet tunnel est une sorte de « passe-muraille quantique ». En mécanique classique, un personnage qui veut franchir un obstacle doit augmenter son niveau d'énergie au dessus d'un certain niveau. En mécanique quantique, en revanche, il est possible de franchir cet obstacle avec une certaine probabilité même si notre énergie est inférieure au potentiel de l'obstacle. Bien sûr, cette probabilité diminue à mesure que cette différence d'énergie augmente.

17. Cet effet tunnel assure la cohésion des solides, et permet aussi à un électron de se délocaliser sur l'ensemble d'un solide. Cet effet tunnel est possible grâce à la dualité de l'électron : il est à la fois une particule et une onde. On peut mettre en évidence cette dualité grâce à l'expérience suivante : une source émet des électrons un par un, ceux-ci ont le choix de passer entre deux fentes possibles. La figure d'interférence obtenue montre que, bien que les électrons soient émis un par un, ils se comportent de manière ondulatoire.
18. Les électrons des couches externes de l'atome (donc les moins fortement liés au noyau) vont pouvoir se délocaliser d'un atome à l'autre par effet tunnel. Ces « sauts », sont à l'origine de la cohésion d'un solide et permettent également la conduction d'un courant électronique à travers tout le solide.
19. Une autre conséquence de cet effet tunnel est que l'énergie d'un solide n'est pas une simple répétition n fois des niveaux d'énergie de chaque atome isolé. En réalité, il apparaît une série d'énergies admissibles qui se répartissent dans une certaine gamme d'énergie, cette gamme est appelée bande d'énergie permise. D'autres gammes restent interdites. Ainsi, si les atomes restent éloignés les uns des autres, les bandes d'énergies admises sont très étroites, mais à mesure que la distance inter-atomique diminue, ces bandes s'élargissent et le solide peut alors admettre une plus large gamme de niveaux d'énergie.

20. Nous pouvons penser, comme dans la classification périodique, que les électrons remplissent ces bandes d'énergies, toujours en respectant le principe d'exclusion de Pauli. L'énergie du dernier niveau rempli est appelée énergie du niveau de Fermi. La manière dont se place ce dernier niveau rempli va déterminer la nature du matériau (métal ou isolant). Si le niveau de Fermi se place dans une bande d'énergie admise, il sera très facile d'exciter les électrons, le matériau sera donc un métal. Si au contraire le niveau de Fermi se place dans une bande d'énergie interdite, il n'est pas possible d'exciter les électrons en appliquant une petite différence de potentiel, nous avons donc affaire à un isolant. Enfin, un semi-conducteur est un isolant dont la bande d'énergie interdite (« gap », en anglais), est suffisamment petite pour que l'on puisse exciter un nombre significatif de porteurs de charge simplement avec la température ambiante.
Nous voyons donc que l'explication de propriétés aussi courantes des matériaux repose sur les principes généraux de la mécanique quantique.
21. Ainsi, dans un solide constitué d'atomes dont la couche électronique externe est complète, les électrons ne peuvent sauter d'un atome à l'autre sans violer le principe d'exclusion de Pauli. Ce solide sera alors un isolant.

22-23. En réalité, les semi-conducteurs intrinsèques (les matériaux qui sont des semi-conducteurs à l'état brut) ne sont pas les plus utiles. On cherche en fait à contrôler le nombre de porteurs de charge que l'on va induire dans le matériau. Pour cela, il faut créer des états d'énergies très proches des bandes permises (bande de conduction ou bande de Valence). On introduit à ces fins des impuretés dans le semi-conducteur (du bore dans du silicium, par exemple) pour fournir ces porteurs de charges. Si on fournit des électrons qui sont des porteurs de charges négatifs, on parlera de dopage N. Si les porteurs de charges sont des trous créés dans la bande de Valence, on parlera de dopage P.
24. L'assemblage de deux semi-conducteurs P et N est la brique de base de toute l'électronique moderne, celle qui permet de construire des transistors (aux innombrables applications : amplificateurs, interrupteurs, portes logiques, etc.). Le bond technologique dû à l'invention du transistor dans les années 1950 repose donc sur tout l'édifice théorique et expérimental de la mécanique quantique. L'invention du transistor a valu le prix Nobel en 1956 à Brattain, Shockley et Bardeen. Le premier transistor mesurait quelques centimètres, désormais la concentration dans un circuit intégré atteint plusieurs millions de transistors au cm². Il existe même une célèbre loi empirique, proposée par Moore, qui observe que le nombre de transistors que l'on peut placer sur un microprocesseur de surface donnée double tous les 18 mois. Cette loi est assez bien vérifiée en pratique depuis 50 ans !
25. En mécanique quantique, il existe un balancier permanent entre théorie et expérience. La technologie peut induire de nouvelles découvertes fondamentales, et réciproquement.
Ainsi, le transistor à effet de champ permet de créer à l'interface entre un oxyde et un semi-conducteur un gaz d'électrons bidimensionnel, qui a conduit à la découverte de « l'effet Hall quantifié ».
26. Cette nappe d'électron présente une propriété remarquable : lorsqu'on applique un champ magnétique perpendiculaire à sa surface, la chute de potentiel dans la direction transverse au courant se trouve quantifiée de manière très précise. Ce phénomène est appelé effet Hall entier (Klaus von Klitzing, prix Nobel 1985) ou effet Hall fractionnaire (Robert Laughlin, Horst Stormer et Daniel Tsui, prix Nobel 1998).
27. L'explication de ces phénomènes fait appel à des concepts fondamentaux de la physique moderne comme le phénomène de localisation d'Anderson, qui explique l'effet des impuretés sur la propagation des électrons dans un solide. Nous voyons donc encore une fois cette interaction permanente entre technologie et science fondamentale.

La supraconductivité :
28. Il existe donc des métaux, des isolants, des semi-conducteurs. Il existe un phénomène encore plus extraordinaire : la supraconductivité. Il s'agit de la manifestation d'un phénomène quantique à l'échelle macroscopique : dans un métal « normal », la résistance tend vers une valeur finie non nulle lorsque la température tend vers 0 alors que dans un métal supraconducteur, la résistance s'annule en dessous d'une certaine température dite critique. Les perspectives technologiques offertes par la supraconductivité paraissent donc évidentes car il serait alors possible de transporter un courant sans aucune dissipation d'énergie. Le problème est de contrôler la qualité des matériaux utilisés, et il serait évidemment merveilleux de pouvoir réaliser ce phénomène à température ambiante...
29. La supraconductivité a été découverte par Kammerlingh Onnes en 1911 quand il refroidit des métaux avec de l'hélium liquide à une température d'environ 4 degrés Kelvin.

30. Ce phénomène ne fut expliqué que 46 ans plus tard, car il fallait tout l'édifice de la mécanique quantique pour réellement le comprendre. Nous devons cette explication théorique à Bardeen, Cooper et Schieffer à la fin des années 1950.
31. Dans un métal, il y a une source naturelle d'attraction entre les électrons. On peut imaginer que chaque électron déforme légèrement le réseau cristallin et y attire un autre électron pour former ce que l'on nomme une paire de Cooper. Ces paires peuvent échapper au principe d'exclusion de Pauli car elles ont un Spin 0. Elles se comportent alors comme des bosons et non plus comme des fermions, et s'écroulent dans un même état d'énergie pour former un état collectif. Le matériau a un comportement analogue à l'état de superfluide de l'hélium 4. Toutes ces paires de Cooper sont donc décrites par une unique fonction d'onde, c'est un état quantique macroscopique. Il existe donc de nombreuses propriétés qui révèlent cet état quantique à l'échelle du matériau.

32. A la fin des années 1950, la théorie de la supraconductivité est enfin comprise et le but est maintenant d'augmenter la température critique. Une véritable course est alors lancée, mais celle-ci n'eut pas que des succès. Alors que en 1911 Kammerlingh Onnes observait la supraconductivité du mercure à une température de 4K, à la fin des années 80, nous en étions encore à environ 30K. En 1986, cette température critique fait un bond considérable et se trouve aujourd'hui aux alentours des 140K. La température de l'azote liquide étant bien inférieure à ces 140K, il est désormais moins coûteux d'obtenir des supraconducteurs.

33. Ces supraconducteurs possèdent des propriétés étonnantes. Par exemple, un champ magnétique ne peut pénétrer à l'intérieur d'un matériau supraconducteur. Ceci permet de faire léviter un morceau de supraconducteur en présence d'un champ magnétique !

34. Cette « lévitation magnétique » offre de nouvelles perspectives : il est par exemple possible de faire léviter un train au dessus de ses rails, il faut alors très peu d'énergie pour propulser ce train à de grandes vitesses. Un prototype japonais a ainsi atteint des vitesses de plus de 500km/h.
Les supraconducteurs permettent de créer des champs magnétiques à la fois très intenses et contrôlés, et servent donc pour l'imagerie par résonance magnétique (IRM). Ceci offre bien sûr de nouvelles possibilités en imagerie médicale.
Les supraconducteurs peuvent être également utilisés pour créer de nouveaux outils pour les physiciens : dans le nouvel accélérateur de particules au CERN à Genève, les aimants sont des supraconducteurs.

35. L'année 1986 voit une véritable révolution dans le domaine de la supraconductivité. Bednorz et Muller découvrent en effet une nouvelle famille de matériaux supraconducteurs qui sont des oxydes de cuivre dopés. En l'absence de dopage, ces matériaux sont des isolants non-conventionnels, dans lesquels le niveau de Fermi semble être dans une bande permise (isolants de Mott). La température critique de ces supraconducteurs est bien plus élevée que dans les supraconducteurs conventionnels : le record est aujourd'hui de 138 degrés Kelvin pour un composé à base de mercure. C'est une très grande surprise scientifique que la découverte de ces nouveaux matériaux, il y a près de vingt ans.
Des matériaux aux propriétés étonnantes :
36. Ces sont donc des isolants d'un nouveau type, dits de Mott. Ces matériaux sont isolants non pas parce que leur couche extérieure est pleine mais parce que les électrons voulant sauter d'un atome à l'autre par effet tunnel se repoussent mutuellement.

37. La compréhension de la physique de ces matériaux étonnants est un grand enjeu pour les physiciens depuis une vingtaine d'années. En particulier, leur état métallique demeure très mystérieux et ne fait à ce jour pas le consensus de la communauté scientifique.

38. Il est également possible de fabriquer des métaux à partir de molécules organiques, nous obtenons alors des « plastiques métalliques » pouvant également devenir supraconducteurs en dessous d'une certaine température (découverte par Denis Jérome et son équipe à Orsay en 1981). Le diagramme de phase des supraconducteurs organiques est au moins voire plus compliqué que celui des oxydes métalliques.

39. Actuellement, des recherches sont menées sur des alliages ternaire, et quaternaires qui semblent offrir encore de nouvelles propriétés. Par exemple, les oxydes de manganèse ont une magnétorésistance colossale, c'est-à-dire que leur résistance varie beaucoup en présence d'un champ magnétique. Cette particularité pourrait être utilisée dans le domaine de l'électronique de Spin, où on utilise le Spin des électrons, en plus de leur charge pour contrôler les courants électriques. Les oxydes de Cobalt, quant à eux, présentent la propriété intéressante d'être des thermoélectriques (i.e capables de produire un courant électrique sous l'action d'un gradient de température).
Il existe donc de très nombreux défis dans ce domaine, ils sont de plusieurs types. D'abord, l'élaboration de structures peut permettre de découvrir de nouveaux matériaux aux nouvelles propriétés qui soulèvent l'espoir de nouvelles applications.

Mais il existe aussi des défis théoriques : est il possible de prédire les propriétés d'un matériau à partir des lois fondamentales ? Des progrès importants ont été réalisés durant la seconde partie du XXème siècle et ont valu à Walter Kohn le prix Nobel de chimie. Cependant, ces méthodes ne sont pas suffisantes pour prédire la physique de tous les matériaux, en particulier de ceux présentant de fortes corrélations entre électrons. Les puissances conjuguées de la physique fondamentale et calculatoire des ordinateurs doivent être mise à service de ce défi. Par ailleurs, de nouveaux phénomènes apparaissent dans ces matériaux qui amèneront certainement des progrès en physique fondamentale.

La chimie, la physique et l'ingénierie des matériaux et de leurs propriétés électroniques semblent donc avoir de beaux jours devant eux !

 

   VIDEO       CANAL  U         LIEN   

 
 
 
 

La robotique

 


 

 

 

 

 

L’ESSENTIEL SUR…
La robotique


Publié le 31 mars 2016
       
Dans un avenir proche, la robotique occupera une place majeure dans notre quotidien. La France fait actuellement partie des pays les plus innovants dans le domaine. La robotique possède de nombreux champs d’applications comme la robotique industrielle ou la robotique de service. Qu’il s’agisse de robot civil ou militaire, il existe désormais des robots capables d’étonnantes prouesses dans de nombreux secteurs : robots-compagnons assistant les personnes à domicile ou en charge de la surveillance et des soins, robots assurant la logistique dans les hôpitaux, robots assistant les industriels dans la réalisation de gestes pénibles et répétitifs, ou encore permettant le développement de prothèses ou d’orthèses intelligentes.

DÉFINITION / HISTORIQUE
Contrairement aux automates, machines dont l’origine remonte au XVIIIe siècle, les robots sont des systèmes munis de capteurs, capables d’agir de façon autonome et pas seulement selon un programme préétabli. Ces dispositifs dits « intelligents » sont capables de recueillir des informations extraites de leur environnement dont le traitement va influencer leur fonctionnement. La robotique s’est déployée dans les années soixante au travers de la robotique dite industrielle ou manufacturière. La création des premiers robots destinés à une intervention en milieu hostile a été impulsée et financée par l’industrie nucléaire dès la fin des années 1950.
Aujourd'hui, un autre domaine d’application de la discipline est en plein essor en France et dans le monde : la robotique de service.
Certaines avancées scientifiques, comme dans le domaine des neurosciences, apportent de nouveaux champs d’application avec une préoccupation plus forte pour l’amélioration des capacités d’apprentissages et d’intelligence des robots actuels. Objectif : intégrer plus facilement ces nouvelles machines dans des environnements complexes en totale interaction avec l’homme pour tenter de répondre à des enjeux sociétaux majeurs.

Le marché de la robotique
En 2005, le marché global de la robotique était estimé à 11 milliards de dollars ; il pourrait s’élever à 30 milliards de dollars en 2015. Par ailleurs, la robotique de service pèserait en 2020 100 milliards d’euros contre 3,5 en 2010.
Largement dominé par le Japon, le marché de la robotique civile connaît également un développement important en Allemagne. Le marché de la robotique militaire est surtout contrôlé par les États-Unis et Israël. La France, grâce à ses compétences en intelligence artificielle, conserve une position très intéressante sur les marchés de la robotique. En mars 2013, le gouvernent présentait son nouveau plan « France Robot Initiatives » qui devrait rassembler 100 millions d’euros de fonds publics et privés destinés à la robotique de service.


RÉPONDRE
AUX GRANDS ENJEUX SOCIÉTAUX
ET S’ADAPTER À L’ENVIRONNEMENT

Pour répondre aux nouveaux besoins des industriels et particuliers, et s’adapter à des environnements de plus en plus complexes, les technologies robotiques devront être encore plus performantes et intelligentes. Les robots développés devront pouvoir intervenir dans des secteurs aussi variés que la chirurgie ou la surveillance de sites sensibles. L’assistance de robots sophistiqués est ainsi envisagée dans le cadre d’opérations chirurgicales complexes.
De même, le développement de robots collaboratifs ou « cobots » dans le secteur industriel permettrait de réduire voire supprimer l’apparition de troubles musculo-squelettique (TMS), majoritairement dus à la réalisation de tâches pénibles et répétitives. Enfin, depuis l’avènement de la robotique industrielle dans les années 50-60, la création de robots capables d’intervenir en milieux hostiles, pour éviter à l’homme toute opération de maintenance dangereuse, reste une priorité.
Aujourd’hui la R&D dans le domaine de la robotique en France se focalise sur trois applications : la téléopération, la cobotique et la manipulation dextre autonome. Ces disciplines sont à la fois présentes en robotique industrielle et manufacturière et en robotique de service.


ZOOM SUR

La R&D et la robotique
*         La téléopération
*         L’activité dans le domaine de la téléopération est orientée vers le contrôle supervisé et l’assistance à l’opérateur pour augmenter l’efficacité des tâches opérées à distance. Actuellement la téléopération est présente dans les secteurs nucléaire, médical et militaire.
*        
*         La Cobotique
*         La Cobotique, ou robotique collaborative, vise à développer des technologies robotiques en interaction continue avec l’homme. La recherche porte sur la sécurité et l’efficacité de l’interaction « homme-robot » et sur de nouvelles architectures de cobots, depuis les systèmes d’amplification d’effort jusqu’aux exosquelettes.
*        
*         La manipulation dextre autonome
*         L’objectif de cette discipline est de développer les technologies pour la robotique mobile et la manipulation intelligente



HERCULE ET ABLE : À LA FRONTIÈRE
DE « L’HOMME AUGMENTÉ »

La recherche sur les exosquelettes s’intéresse aux systèmes pour les membres supérieur, les membres inférieurs et aux systèmes complets. ABLE est un cobot générique à 7 axes, exosquelette du membre supérieur, entièrement commandé en effort, qui est conçu pour répondre à un grand nombre d’applications, comme interface haptique pour une simulation de réalité virtuelle, comme bras maître pour de la téléopération à retour d’effort, comme orthèse pour des tâches de rééducation ou comme robot d’assistance au mouvement pour des personnes handicapées.

Hercule est un exosquelette complet pour l’assistance mobile au port de charge, offrant une capacité d’emport de 40 kg durant une marche de 20 km. Cette technologie très prometteuse est développée par le CEA avec la Direction générale de l’armement (DGA) et en partenariat avec la PME RB3D, spécialisée dans le domaine des dispositifs d’assistance aux gestes manuels pénibles, sources de troubles musculo-squelettiques (TMS).
Ce programme de recherche entre le RB3D et le CEA-List se poursuit par le développement d’un nouvel exosquelette baptisé Heracles via un second financement de la DGA. Réalisé en matériaux composites, Heracles permettrait à son opérateur de se déplacer avec une charge pesant jusqu’à 100 kg, voire d’effectuer des sauts, et pourrait viser d’autres domaines que celui de la Défense. En effet, RB3D compte également concevoir une version civile d’Heracles destinée aux pompiers et à tous ceux qui sont amenés à porter de lourdes charges.


ROBOTS COLLABORATIFS :
ASSISTER DANS L’EFFORT

Cobot d’assistance pour l’industrie développé par le CEA-List, l'institut Cetim et la PME RB3D. © DR
Les évolutions récentes de la robotique manufacturière permettent aujourd’hui une interaction directe « homme-machine ». En 2011, les ingénieurs du CEA-List et de l’Institut Cetim ont mis en commun leurs compétences en mécatronique et ont aidé la PME RB3D à développer et produire un cobot d’assistance pour l’industrie. Ce « robot collaboratif » est un bras mécatronique dédié à des tâches industrielles pénibles comme le brossage, le burinage ou encore la manipulation. L’opérateur manipule l’outil avec le bras instrumenté : certaines opérations qui réclamaient 20 kg d’effort n’en demandent alors plus qu’un. Un mode de commande intuitif, intégré au « cobot », amplifie l’effort de l’opérateur d’un facteur réglable de 1 à 50, en utilisant un unique capteur d’efforts. Grâce à l’assistance apportée, ce cobot permet de réduire considérablement le risque de TMS.
La cobotique est présente dans le domaine industriel mais également dans le domaine médical. En chirurgie orthopédique, par exemple, le cobot partage une tâche avec le chirurgien en apportant une fonction d’anticollision active lui permettant de percevoir, voire d’interdire, l’approche d’un organe critique. La rééducation, après un accident vasculaire cérébral (AVC), par exemple, peut également tirer parti des interfaces haptiques, en les associant à des technologies de réalité virtuelles. Ces technologies sont transférées vers la start-up Haption du CEA-List .


DES MAINS ROBOTIQUES INTELLIGENTES
Avec la manipulation dextre autonome, la robotique mobile entre dans une nouvelle dimension, en permettant une manipulation fine et intelligente. Les tâches de manipulation dextre reposent sur l’utilisation de mains robotiques particulièrement adaptées aux environnements dans lesquels évolue l’homme. Le CEA a ainsi développé d’une part, une main anthropomorphe à l’état de l’art comptant 23 degrés de liberté (ddl), basée sur l’utilisation d’actionnements réversibles à câbles dont l’électronique est embarquée, et d’autre part, une main moins complexe (12 ddl) pour les opérations de saisie les plus courantes.

 

   DOCUMENT     cea         LIEN

 
 
 
 

Les diverses formes d'énergie

 

 

 

 

 

 

 

Les diverses formes d'énergie

L'énergie se manifeste dans un mouvement, une réaction chimique, un rayonnement, un dégagement de chaleur, un système électrique ou la fission d'un atome.

ÉNERGIE CINÉTIQUE
C’est l’énergie associée au mouvement d’un objet. On a vu qu’elle était proportionnelle à la masse “m” et au carré de la vitesse “v” de l’objet (à condition que cette vitesse soit faible devant celle de la lumière, 300 000 km/s).

ÉNERGIE DE GRAVITATION
Deux corps massifs s’attirent. Cette force, dite de gravitation, est faible pour de petits objets, mais devient importante pour des astres. Ainsi le Soleil et la Terre, la Terre et la Lune, s’attirent ; la pesanteur n’est autre que la force de gravitation exercée par la Terre sur les objets dans son voisinage. À cette force correspond une énergie de gravitation, plus élevée lorsque les corps sont éloignés l’un de l’autre que lorsqu’ils sont proches.

L’énergie de gravitation est dite potentielle, parce qu’elle ne se manifeste à nous que lorsqu’elle se convertit en une autre forme d’énergie. L’énergie potentielle d’une cabine d’ascenseur est plus grande au sixième étage qu’au rez-de-chaussée, car elle est alors plus éloignée du centre de la Terre qui l’attire. Si l’on coupait le câble en neutralisant les freins de sécurité, la cabine tomberait en s’accélérant, son énergie potentielle se transformerait alors en énergie cinétique, plus visible.

L’énergie peut changer de forme. Par exemple, la combustion du pétrole se convertit en chaleur.


De même, l’énergie d’une masse de 1 kg d’eau à la surface d’un lac de barrage est plus élevée que son énergie lorsqu’elle est au pied du barrage. En effet, pour une différence d’altitude de 100 m, la différence d’énergie potentielle est de 981 J. C’est cette énergie qui est exploitée dans une centrale hydroélectrique, où la chute de l’eau actionne des turbines qui entraînent des alternateurs.


ÉNERGIE ÉLASTIQUE
Il s’agit encore d’une énergie potentielle, associée cette fois aux déformations des objets élastiques, par exemple à la tension d’un ressort ou à la compression d’un gaz.

TRAVAIL
Ce terme désigne un transfert d’énergie réalisé en exerçant une force dont le point d’action se déplace. En soulevant un poids, par exemple en remontant de l’eau depuis la base jusqu’au sommet d’un barrage, on lui fournit un travail, qui lui permet d’acquérir une énergie potentielle plus élevée ; le travail fourni à une pompe qui comprime un gaz accroît l’énergie élastique de celui-ci et contribue à l’échauffer.
Les formes d’énergie énumérées jusqu’ici sont des énergies mécaniques.

ÉNERGIE CALORIFIQUE
À l’échelle atomique, la chaleur se traduit par un mouvement désordonné et plus ou moins rapide des molécules. À notre échelle, elle constitue la forme d’énergie mise en jeu lorsque la température varie ou lorsqu’un matériau change d’état (fusion de la glace, évaporation de l’eau). Elle peut se transférer de proche en proche sans se transformer en une autre forme d’énergie (conduction calorifique). Elle peut aussi se convertir en énergie mécanique, dans une turbine, une machine à vapeur, ou un réacteur d’avion, mais cette conversion ne peut être que partielle.

ÉNERGIE ÉLECTRIQUE
Les particules chargées exercent les unes sur les autres des forces électriques. De même qu’une énergie potentielle de gravitation était associée aux forces de gravitation ou de pesanteur, une énergie potentielle électrique est associée aux forces électriques entre charges. Le déplacement de celles-ci dans un circuit s’accompagne de transferts plus ou moins rapides d’énergie, mesurés par la puissance électrique. Une énergie électrique peut se transformer en chaleur dans une résistance (radiateur, réchaud), en travail dans un moteur.

ÉNERGIE RADIATIVE
Un rayonnement transporte de l’énergie, même à travers le vide. Le Soleil nous transmet une puissance de l’ordre de 1 kW par mètre carré, sous forme de lumière visible et de rayonnement infrarouge. Un radiateur nous communique sa chaleur par l’intermédiaire de l’air ambiant, mais aussi directement sous forme de rayonnement infrarouge. Dans le filament d’une ampoule électrique, l’énergie électrique se transforme en chaleur, puis cette chaleur est évacuée principalement sous forme d’énergie radiative, lumineuse et infrarouge.
Un four à micro-ondes communique de la chaleur aux aliments à partir d’une énergie électrique, par l’intermédiaire d’un rayonnement dit de micro-ondes, analogue à celui d’un radar. Inversement, on peut convertir en énergie électrique une partie de l’énergie lumineuse en provenance du Soleil à l’aide de photopiles solaires. Les ondes radio transportent aussi une énergie, certes faible, mais suffisante pour véhiculer du son, des images ou de l’information.

ÉNERGIE CHIMIQUE
L’énergie chimique est associée à la liaison des atomes dans les molécules. Elle est plus élevée lorsque ces atomes sont séparés que lorsqu’ils sont liés en molécules, et cet écart est d’autant plus grand que la liaison est plus forte. Puisqu’elle modifie l’énergie chimique des corps, une réaction chimique s’accompagne d’une transformation de cette énergie en une autre forme d’énergie, le plus souvent en chaleur. Un réchaud à gaz produit ainsi une certaine quantité d’énergie calorifique, égale à la différence entre l’énergie chimique du gaz et de l’oxygène consommés et celle des produits de combustion (vapeur d’eau et dioxyde de carbone). Dans une centrale thermique au charbon ou au fioul, une fraction de la chaleur de combustion est transformée en énergie électrique. Dans un accumulateur ou une pile électrique, une partie de l’énergie chimique libérée par la réaction est directement récupérée sous forme électrique.
Bien que d’apparence dissemblable, les énergies calorifique, électrique, radiative et chimique ont une origine commune : à l’échelle microscopique, toutes sont reliées aux forces électriques entre des particules chargées.

ÉNERGIE NUCLÉAIRE
L’énergie nucléaire est localisée dans les noyaux des atomes. Ces noyaux, 100 000 fois plus petits que les atomes eux-mêmes, sont constitués de particules plus élémentaires – les protons et les neutrons – très fortement liés entre eux. De même que la liaison des atomes en molécules est la source de l’énergie chimique, la liaison des protons et neutrons en noyaux par des forces nucléaires est la source de l’énergie nucléaire. Une réaction nucléaire, en transformant les édifices des noyaux atomiques, s’accompagne ainsi d’un dégagement de chaleur. C’est ce mécanisme qui produit au cœur du Soleil, par fusion des noyaux d’hydrogène en noyaux d’hélium, la chaleur qui sera ensuite rayonnée. Dans nos centrales électronucléaires, nous utilisons une autre réaction nucléaire, la fission des noyaux d’uranium, qui les transforme chacun en deux autres noyaux environ deux fois plus petits ; une partie de la chaleur produite (33 % comme nous l’avons indiqué dans le chapitre “Qu'est-ce que l'énergie ?”, au paragraphe “L'énergie se conserve”) est convertie en électricité.


   DOCUMENT     cea         LIEN

 
 
 
 

LA DÉMARCHE SCIENTIFIQUE

 



 

 

 

 

 

La démarche scientifique

Publié le 19 septembre 2018

Pour comprendre et expliquer le réel en physique, chimie, sciences de la vie et de la Terre, les scientifiques utilisent une méthode appelée la démarche scientifique. Quels sont ses grands principes ? Quels outils sont utilisés pour mettre en place des raisonnements logiques ? Découvrez l’essentiel sur la démarche scientifique.
QU’EST-CE QUE LA DÉMARCHE SCIENTIFIQUE ?

La démarche scientifique est la méthode utilisée par les scientifiques pour parvenir à comprendre et à expliquer le monde qui nous entoure. De façon simplificatrice, elle se déroule en plusieurs étapes : à partir de l’observation d’un phénomène et de la formulation d’une problématique, différentes hypothèses vont être émises, testées puis infirmées ou confirmées ; à partir de cette confirmation se construit un modèle ou théorie. L’observation et l’expérimentation sont des moyens pour tester les différentes hypothèses émises.

L’évolution de la démarche scientifique
au fil du temps
De l’Antiquité à nos jours, les moyens d’investigation sur le monde ont évolué pour aboutir à une démarche dont les fondements sont communs à toutes les sciences de la nature (physique, chimie, sciences de la vie et de la Terre).
Dès l’Antiquité, Hippocrate, médecin grec, apporte de la nouveauté dans son traité « Le pronostic », qui détaille, pour la première fois, un protocole pour diagnostiquer les patients. Ce texte est l’une des premières démarches scientifiques.
Le XVIIe siècle est l’âge d’or des instruments et désormais l'expérience est au cœur de la pratique scientifique : on parle de Révolution scientifique. En plus des observations, les hypothèses peuvent aussi être testées par l’expérience. Par ailleurs, l’invention d’instruments tels que le microscope donne la possibilité aux scientifiques d’observer des éléments jusqu’alors invisibles à l'œil nu, comme les cellules, découvertes par Robert Hooke en 1665.

A partir du XXe siècle, la science se fait de manière collective. Les études scientifiques sont soumises au jugement des « pairs », c’est-à-dire à d’autres scientifiques et toutes les expériences doivent être détaillées pour être reproductibles par d’autres équipes. En contrepartie, la publication dans des revues internationales, et sur Internet dès les années 1990, permet aux chercheurs du monde entier d’accroître la notoriété de leurs idées et facilite l'accès aux sciences pour le grand public. Mais avec l'arrivée de l'informatique, il n'y a pas que la communication qui change, la méthode scientifique aussi se transforme. Il devient plus simple de trier de grands nombres de données et de construire des études statistiques. Il faut cependant faire attention à sélectionner les critères pertinents, car les progrès technologiques apportent aux chercheurs d’immenses quantités d’informations, appelées big data.

LES DIFFÉRENTES ÉTAPES DE LA DÉMARCHE SCIENTIFIQUE
Observation et formulation d’une problématique
A la base de toute démarche scientifique,il y a au départ une observation d’un phénomène et la formulation d’une problématique.
Par exemple, depuis l’Antiquité, certains savants sont convaincus que la Terre est immobile au centre de l’Univers et que le Soleil tourne autour d’elle : c’est l’hypothèse du géocentrisme. Elle est émise car à l’époque, toutes les observations se faisaient à l’œil nu. Vu depuis la Terre, le Soleil peut donner l’impression de tourner autour de nous car il se lève sur l’horizon Est et se couche sur l’horizon Ouest. Cependant, ce n’était qu’une intuition car à ce stade, aucune véritable démarche scientifique n’est engagée.
Plus tard, quand les astronomes ont observé le mouvement des planètes, ils ont vu que le déplacement de certaines planètes forme parfois une boucle dans le ciel, ce qui est incompatible avec un mouvement strictement circulaire autour de la Terre. Le problème fut résolu en complexifiant le modèle : une planète se déplace sur un cercle dont le centre se déplace sur un cercle. C’est la théorie des épicycles.

Les hypothèses et la construction d’un modèle
Une nouvelle hypothèse fut émise par Nicolas Copernic au XVe siècle. Selon lui, le Soleil est au centre de l’Univers et toutes les planètes, dont la Terre, tournent autour de lui. On appelle cette hypothèse « l’héliocentrisme ». Ce modèle rend naturellement compte des rétrogradations planétaires mais possède quand même des épicycles pour décrire leurs mouvements avec plus de précisions.
Durant l’hiver 1609-1610, Galilée pointe sa lunette vers le ciel et découvre les phases de Vénus et des satellites qui tournent autour de la planète Jupiter. Ses observations l’incitent à invalider l’hypothèse géocentrique et à adhérer à l’héliocentrisme.
Petit à petit, cette méthode est devenue générale. Une hypothèse reste considérée comme valide tant qu’aucune observation ou expérience ne vient montrer qu’elle est fausse. Plus elle résiste à l’épreuve du temps, plus elle s’impose comme une description correcte du monde. Cependant, il suffit d’une seule observation contraire pour que l’hypothèse s’effondre, et dans ce cas, c’est définitif. Il faut alors changer d’hypothèse.
Reste que l’héliocentrisme de Copernic s’est d’abord imposé par la qualité des éphémérides planétaires qui en étaient tirées plus que par la force de son hypothèse, certes plus pratique que l’hypothèse géocentrique mais pas confirmée directement. Pour cela, il fallut encore attendre quelques années, le temps que la qualité des instruments d’observation progresse.

L’observation et l’expérimentation
Si la Terre est animée d’un mouvement autour du Soleil alors on devrait constater un effet de parallaxe, c’est-à-dire de variation des positions relatives des étoiles au fil de l’année. L’absence d’une parallaxe mesurable était utilisée contre l’héliocentrisme. C’est en cherchant à mesurer la parallaxe des étoiles que l’astronome anglais James Bradley découvrit en 1727 un autre effet, l’aberration des étoiles, dont il montra qu’elle ne pouvait provenir que de la révolution de la Terre autour du Soleil. La première mesure de parallaxe, due à l’astronome Friedrich Bessel en 1838, vient clore le débat.
Le mouvement de rotation de la Terre ne fut prouvé que plus tard. En 1851 le physicien Léon Foucault mène une expérience publique spectaculaire : un grand pendule est accroché à la voûte du Panthéon de Paris et la lente révolution de son plan d’oscillation révèle la rotation de la Terre sur elle-même.
On trouve là une autre caractéristique de la démarche scientifique. Une fois le modèle mis au point en s’appuyant sur des observations qui le justifient, il faut en tirer des prédictions, c’est-à-dire des conséquences encore non observées du modèle. Cela permet de mener de nouvelles observations ou de bâtir de nouvelles expériences pour aller tester ces prédictions. Si elles sont fausses, le modèle qui leur a donné naissance est inadéquat et doit être réformé ou oublié. Si elles sont justes, le modèle en sort renforcé car il est à la fois descriptif et prédictif.

La communication
Aujourd’hui, la « revue par les pairs » permet de contrôler la démarche scientifique d’une nouvelle découverte, par un collège de scientifiques indépendants. Si les observations et expérimentations vont dans le même sens et qu’elles ne se contredisent pas, la proposition est déclarée apte à être publiée dans une revue scientifique.

QUELS OUTILS POUR DÉCRYPTER
LA SCIENCE ?
La démarche scientifique repose sur la construction d’un raisonnement logique et argumenté. Elle utilise les bases de la logique formelle : l’induction et la déduction.

L’induction
L’induction cherche à établir une loi générale en se fondant sur l’observation d’un ensemble de faits particuliers (échantillon).
L'induction est par exemple utilisée en biologie. Ainsi, pour étudier des cellules dans un organisme, il est impossible de les observer toutes, car elles sont trop nombreuses. Les scientifiques en étudient un échantillon restreint, puis généralisent leurs observations à l’ensemble des cellules. Les scientifiques établissent alors des hypothèses et des modèles dont il faudra tester les prédictions par des observations et des expériences ultérieures.

La déduction
La déduction relie des propositions, dites prémisses, à une proposition, dite conclusion, en s’assurant que si les prémisses sont vraies, la conclusion l’est aussi.
Exemple classique de déduction : tous les hommes sont mortels, or Socrate est un homme donc Socrate est mortel.
La déduction est beaucoup utilisée en physique ou mathématiques, lors de la démonstration d’une loi ou d’un théorème.

Raisonnement du Modus Ponens et du Modus Tollens
Le Modus Ponens et le Modus Tollens sont utilisés par les scientifiques dans leurs raisonnements.
Le Modus Ponens est, en logique, le raisonnement qui affirme que si une proposition A implique une proposition B, alors si A est vraie, B est vraie.
Mais si une implication est vraie alors sa contraposée l’est également (même valeur de vérité selon les règles de la logique formelle). Cela signifie que « la négation de B implique la négation de A » (contraposée de « A implique B »).
Le Modus Tollens est le raisonnement suivant : si une proposition A implique une proposition B, constater que B est fausse permet d’affirmer que A est fausse.
Un exemple : On sait que tous les poissons respirent sous l'eau. Or le saumon est un poisson donc il respire sous l'eau (Modus Ponens). La proposition initiale peut être énoncée sous une autre proposition équivalente (contraposée) : si « je ne peux pas respirer sous l’eau, alors je ne suis pas un poisson ». Cela permet de construire le raisonnement suivant : tous les poissons respirent sous l’eau, or je ne respire pas sous l’eau, donc je ne suis pas un poisson (Modus Tollens).

 

  DOCUMENT     cea         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google